机构:
Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, IsraelTechnion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
Helzer, A
[1
]
Barzohar, M
论文数: 0引用数: 0
h-index: 0
机构:
Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, IsraelTechnion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
Barzohar, M
[1
]
Malah, D
论文数: 0引用数: 0
h-index: 0
机构:
Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, IsraelTechnion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
Malah, D
[1
]
机构:
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
来源:
21ST IEEE CONVENTION OF THE ELECTRICAL AND ELECTRONIC ENGINEERS IN ISRAEL - IEEE PROCEEDINGS
|
2000年
关键词:
D O I:
10.1109/EEEI.2000.924441
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
implicit polynomials (IP) are being used to represent 2D curves and 3D surfaces [1,2,3,5]. The zero-set of a 2D implicit polynomial of the form of p(x,y)= a(1)x(N) + a(2)x(N-1)y +...+ a(r) = 0 can be used to describe data points making up a 2D curve. A similar 3D polynomial p(x,y,z)= 0 describes data points on a 3D surface [2]. in this paper we describe a way to restrict the zero-set of the fitted polynomial so that correct restoration of the data from the polynomial's coefficients will be achieved.