Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites

被引:83
作者
Osman, MA [1 ]
Rupp, JEP [1 ]
Suter, UW [1 ]
机构
[1] ETH, Inst Polymers, Dept Mat, CH-8093 Zurich, Switzerland
关键词
amphiphilic copolymer; gas permeability; nanocomposite;
D O I
10.1016/j.polymer.2005.06.101
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanocomposites of high-density-polyethylene (HDPE) and organically (dimethyldioctadecylammonium) modified montmorillonite (OM) were prepared and the effect of non-ionic surfactants on the OM exfoliation and composite properties (tensile + gas-permeation) was studied. Amphiphilic block and random copolymers of different chemical structures were used as dispersing agents. The presence of copolymers in the composites led to polymer intercalation that increased the d-spacing and facilitated the exfoliation. Consequently, the permeability coefficient (oxygen) of the nanocomposites was decreased and their stiffness increased. End-functionalized oligomers proved to be more efficient in dispersing the OM than copolymers in which the polar units are randomly distributed along the polymer chain. Poly(ethylene-co-vinyl alcohol) increased the d-spacing but did not improve the properties of the composite probably due to 'bridging' the silicate layers, which hindered the exfoliation. The OM exfoliation could be enhanced to such an extent that an inclusions' average aspect ratio of 150 was estimated from the oxygen-permeation measurements. With increasing exfoliation, the stiffness, strength and gas-barrier properties of the composites improved significantly. The oxygen permeability of the HDPE nanocomposites was cut to less than half, thus offering a strong barrier to oxygen and humidity useful for food and drug packaging. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8202 / 8209
页数:8
相关论文
共 42 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]   Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique:: synthesis and mechanical properties [J].
Alexandre, M ;
Dubois, P ;
Sun, T ;
Garces, JM ;
Jérôme, R .
POLYMER, 2002, 43 (08) :2123-2132
[3]   Modeling the phase behavior of polymer/clay nanocomposites [J].
Balazs, AC ;
Singh, C ;
Zhulina, E ;
Lyatskaya, Y .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (08) :651-657
[4]   Modeling the interactions between polymers and clay surfaces through self-consistent field theory [J].
Balazs, AC ;
Singh, C ;
Zhulina, E .
MACROMOLECULES, 1998, 31 (23) :8370-8381
[5]   Synthesis and characterization of polyolefin-silicate nanocomposites:: a catalyst intercalation and in situ polymerization approach [J].
Bergman, JS ;
Chen, H ;
Giannelis, EP ;
Thomas, MG ;
Coates, GW .
CHEMICAL COMMUNICATIONS, 1999, (21) :2179-2180
[6]   Barrier properties of oriented disk composites [J].
Fredrickson, GH ;
Bicerano, J .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (04) :2181-2188
[7]   Polymer layered silicate nanocomposites [J].
Giannelis, EP .
ADVANCED MATERIALS, 1996, 8 (01) :29-&
[8]   Theoretical phase diagrams of polymer/clay composites: The role of grafted organic modifiers [J].
Ginzburg, VV ;
Singh, C ;
Balazs, AC .
MACROMOLECULES, 2000, 33 (03) :1089-1099
[9]  
Ginzburg VV, 2000, ADV MATER, V12, P1805, DOI 10.1002/1521-4095(200012)12:23<1805::AID-ADMA1805>3.0.CO
[10]  
2-Z