In Situ Intercalation Replacement and Selective Functionalization of Graphene Nanoribbon Stacks

被引:109
作者
Genorio, Bostjan [1 ,4 ]
Lu, Wei [1 ]
Dimiev, Ayrat M. [1 ]
Zhu, Yu [1 ]
Raji, Abdul-Rahman O. [1 ]
Novosel, Barbara [4 ]
Alemany, Lawrence B. [1 ,3 ]
Tour, James M. [1 ,2 ,3 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[3] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[4] Univ Ljubljana, Fac Chem & Chem Technol, Ljubljana 1000, Slovenia
关键词
graphene nanoribbon stacks; intercalation; alkylation; conductivity; edge functionalization; HIGH-QUALITY; FILMS; REDUCTION; SHEETS;
D O I
10.1021/nn300757t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A cost-effective and potentially industrially scalable, in situ functionalization procedure for preparation of soluble graphene nanoribbon (GNRs) from commercially available carbon nanotubes is presented. The physical characteristics of the functionalized product were determined using SEM, evolved gas analysis, X-ray diffraction, solid-state C-13 NMR, Raman spectroscopy, and GC-MS analytical techniques. A relatively high preservation of electrical properties in the bulk material was observed. Moreover, replacement of intercalated potassium with haloalkanes was obtained. While carbon nanotubes can be covalently functionalized, the conversion of the sp(2)-hybridized carbon atoms to sp(3)-hybridized atoms dramatically lowers their conductivity, but edge functionalized GNRs permit their heavy functionalization while leaving the basal planes intact.
引用
收藏
页码:4231 / 4240
页数:10
相关论文
共 38 条
[1]  
*AM I PHYS, 1972, AM I PHYS HDB
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]   Nonplanar aromatic compounds. 8. Paper 7 - Synthesis, crystal structures, and aromaticity investigations of the 1,n-dioxa[n](2,7)pyrenophanes. How does bending affect the cyclic π-electron delocalization of the pyrene system? [J].
Bodwell, GJ ;
Bridson, JN ;
Cyranski, MK ;
Kennedy, JWJ ;
Krygowski, TM ;
Mannion, MR ;
Miller, DO .
JOURNAL OF ORGANIC CHEMISTRY, 2003, 68 (06) :2089-2098
[4]   Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes [J].
Cano-Marquez, Abraham G. ;
Rodriguez-Macias, Fernando J. ;
Campos-Delgado, Jessica ;
Espinosa-Gonzalez, Claudia G. ;
Tristan-Lopez, Ferdinando ;
Ramirez-Gonzalez, Daniel ;
Cullen, David A. ;
Smith, David J. ;
Terrones, Mauricio ;
Vega-Cantu, Yadira I. .
NANO LETTERS, 2009, 9 (04) :1527-1533
[5]   Low-Loss, High-Permittivity Composites Made from Graphene Nanoribbons [J].
Dimiev, Ayrat ;
Lu, Wei ;
Zeller, Kyle ;
Crowgey, Benjamin ;
Kempel, Leo C. ;
Tour, James M. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) :4657-4661
[6]  
Dresselhaus MS, 2002, ADV PHYS, V51, P1, DOI [10.1080/00018730110113644, 10.1080/00018738100101367]
[7]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[8]   RESONANT RAMAN-SCATTERING IN METALS AT THE INTERBAND ABSORPTION THRESHOLD [J].
EKLUND, PC ;
MAHAN, GD ;
SPOLAR, JG ;
ZHANG, JM ;
ARAKAWA, ET ;
HOFFMAN, DM .
PHYSICAL REVIEW B, 1988, 37 (02) :691-698
[9]  
Englert JM, 2011, NAT CHEM, V3, P279, DOI [10.1038/NCHEM.1010, 10.1038/nchem.1010]
[10]   Macroscopic, neat, single-walled carbon nanotube fibers [J].
Ericson, LM ;
Fan, H ;
Peng, HQ ;
Davis, VA ;
Zhou, W ;
Sulpizio, J ;
Wang, YH ;
Booker, R ;
Vavro, J ;
Guthy, C ;
Parra-Vasquez, ANG ;
Kim, MJ ;
Ramesh, S ;
Saini, RK ;
Kittrell, C ;
Lavin, G ;
Schmidt, H ;
Adams, WW ;
Billups, WE ;
Pasquali, M ;
Hwang, WF ;
Hauge, RH ;
Fischer, JE ;
Smalley, RE .
SCIENCE, 2004, 305 (5689) :1447-1450