Integrated, electrically contacted NAD(P)+-dependent enzyme -: carbon nanotube electrodes for biosensors and biofuel cell applications

被引:147
作者
Yan, Yi-Ming [1 ]
Yehezkeli, Omer [1 ]
Willner, Itamar [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
关键词
biofuel cells; biosensors; catalysis; cofactors; nanotubes;
D O I
10.1002/chem.200700806
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integrated, electrically contacted P-nicotinamide adenine dinucleotide- (NAD(+)) or beta-nicotinamide adenine dinucleotide phosphate- (NADP(+)) dependent enzyme electrodes were prepared on single-walled carbon nanotube (SWCNT) supports. The SWCNTs were functionalized with Nile Blue (1), and the cofactors NADP(+) and NAD(+) were linked to I through a phenyl boronic acid ligand. The affinity complexes of glucose dehydrogenase (GDH) with the NADP+ cofactor or alcohol dehydrogenase (AlcDH) with the NAD+ cofactor were crosslinked with glutaric dialdehyde and the biomolecule-functionalized SWCNT materials were deposited on glassy carbon electrodes. The integrated enzyme electrodes revealed bioelectrocatalytic activities, and they acted as amperometric electrodes for the analysis of glucose or ethanol. The bioelectrocatalytic response of the systems originated from the biocatalyzed oxidation of the respective substrates by the enzyme with the concomitant generation of NAD(P)H cofactors. The electrocatalytically mediated oxidation of NAD(P)H by 1 led to amperometric responses in the system. Similarly, an electrically contacted bilirubin oxidase (BOD) - SWCNT electrode was prepared by the deposition of BOD onto the SWCNTs and the subsequent cross-linking of the BOD units using glutaric dialdehyde. The BOD - SWCNT electrode revealed bioelectrocatalytic functions for the reduction of O-2 to H2O. The different electrically contacted SWCNT-based enzyme electrodes were used to construct biofuel cell elements. The electrically contacted GDH - SWCNT electrode was used as the anode for the oxidation of the glucose fuel in conjunction with the BOD - SWCNT electrode in the presence of 02, which acted as an oxidizer in the system. The power output of the cell was 23 mu W cm(-2). Similarly, the AlcDH - SWCNT electrode was used as the anode for the oxidation of ethanol, which was acting as the fuel, with the BOD - SWCNT electrode as the cathode for the reduction Of O-2. The power output of the system was 48 mu W cm(-2).
引用
收藏
页码:10168 / 10175
页数:8
相关论文
共 46 条
[1]   Enzymatic biofuel cells for Implantable and microscale devices [J].
Barton, SC ;
Gallaway, J ;
Atanassov, P .
CHEMICAL REVIEWS, 2004, 104 (10) :4867-4886
[2]   Bioelectrocatalysis with modified highly ordered macroporous electrodes [J].
Ben-Ali, S ;
Cook, DA ;
Bartlett, PN ;
Kuhn, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 579 (02) :181-187
[3]   Biofuel cells and their development [J].
Bullen, RA ;
Arnot, TC ;
Lakeman, JB ;
Walsh, FC .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (11) :2015-2045
[4]   A miniature biofuel cell [J].
Chen, T ;
Barton, SC ;
Binyamin, G ;
Gao, ZQ ;
Zhang, YC ;
Kim, HH ;
Heller, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (35) :8630-8631
[5]   Redox potentials of the blue copper sites of bilirubin oxidases [J].
Christenson, Andreas ;
Shleev, Sergey ;
Mano, Nicolas ;
Heller, Adam ;
Gorton, Lo .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (12) :1634-1641
[6]   An enzymatic glucose/O2 biofuel cell:: Preparation, characterization and performance in serum [J].
Gao, Feng ;
Yan, Yiming ;
Su, Lei ;
Wang, Lun ;
Mao, Lanqun .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :989-996
[7]   ELECTRICAL WIRING OF REDOX ENZYMES [J].
HELLER, A .
ACCOUNTS OF CHEMICAL RESEARCH, 1990, 23 (05) :128-134
[8]   ELECTRICAL CONNECTION OF ENZYME REDOX CENTERS TO ELECTRODES [J].
HELLER, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (09) :3579-3587
[9]   Electron-conducting redox hydrogels: design, characteristics and synthesis [J].
Heller, Adam .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (06) :664-672
[10]  
Karyakin AA, 1999, ELECTROANAL, V11, P149, DOI 10.1002/(SICI)1521-4109(199903)11:3<149::AID-ELAN149>3.0.CO