Data structures for mobile data

被引:129
作者
Basch, J [1 ]
Guibas, LJ
Hershberger, J
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Mentor Graph Corp, Wilsonville, OR 97070 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jagm.1998.0988
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A kinetic data structure (KDS) maintains an attribute of interest in a system of geometric objects undergoing continuous motion. In this paper we develop a concentual framework for kinetic data structures, we propose a number of criteria for the quality of such structures, and we describe a number of fundamental techniques for their design. We illustrate these general concepts by presenting kinetic data structures for maintaining the convex hull and the closest pair of moving points in the plane; these structures behave well according to the proposed quality criteria for KDSs. (C) 1999 Academic Press.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 28 条
[1]  
Agarwal P. K., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P39, DOI 10.1145/262839.262858
[2]  
Agarwal P. K., 1998, P 9 ACM SIAM S DISCR, P107
[3]   The overlay of lower envelopes and its applications [J].
Agarwal, PK ;
Schwarzkopf, O ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) :1-13
[4]  
Agarwal PK, 1997, LECT NOTES COMPUT SC, V1272, P31
[5]   APPLICATIONS OF PARAMETRIC SEARCHING IN GEOMETRIC OPTIMIZATION [J].
AGARWAL, PK ;
SHARIR, M ;
TOLEDO, S .
JOURNAL OF ALGORITHMS, 1994, 17 (03) :292-318
[6]   SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS [J].
ATALLAH, MJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (12) :1171-1181
[7]  
Basch J, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P747
[8]  
Basch J., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P344, DOI 10.1145/262839.262998
[9]  
Basch J., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P388, DOI 10.1145/262839.263016
[10]  
Basch J., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P469, DOI 10.1145/262839.263089