Analysis of Gal4-directed transcription activation using Tra1 mutants selectively defective for interaction with Gal4

被引:21
作者
Lin, Ling [1 ,2 ,3 ]
Chamberlain, Lynn [1 ,2 ,3 ]
Zhu, Lihua J. [2 ,3 ]
Green, Michael R. [1 ,2 ,3 ]
机构
[1] Univ Massachusetts, Sch Med, Howard Hughes Med Inst, Worcester, MA 01605 USA
[2] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA 01605 USA
[3] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01605 USA
关键词
bimolecular fluorescence complementation; acidic activation domain; protein-protein interaction; RNA-POLYMERASE-II; BIMOLECULAR FLUORESCENCE COMPLEMENTATION; IN-VIVO TARGET; SACCHAROMYCES-CEREVISIAE; ACETYLTRANSFERASE COMPLEX; BINDING PROTEIN; SAGA COMPONENTS; YEAST; RECRUITMENT; MEDIATOR;
D O I
10.1073/pnas.1116340109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Promoter-specific transcriptional activators (activators) stimulate transcription through direct interactions with one or more components of the transcription machinery, termed the "target." The identification of direct in vivo targets of activators has been a major challenge. Previous studies have provided evidence that the Tra1 subunit of the yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is the target of the yeast activator Gal4. However, several other general transcription factors, in particular the mediator complex, have also been implicated as Gal4 targets. Here we perform a large-scale genetic screen to derive and characterize tra1 alleles that are selectively defective for interaction with Gal4 in vivo [Gal4 interaction defective (GID) mutants]. In contrast to WT Tra1, Tra1 GID mutants are not recruited by Gal4 to the promoter and cannot support Gal4-directed transcription, demonstrating the essentiality of the Gal4-Tra1 interaction. In yeast strains expressing a Tra1 GID mutant, binding of Gal4 to the promoter is unexpectedly also diminished, indicating that Gal4 and Tra1 bind cooperatively. Consistent with cooperative binding, we demonstrate that the Gal4-Tra1 interaction occurs predominantly on the promoter and not off DNA. Finally, we show that although Tra1 is targeted by other activators, these interactions are unaffected by GID mutations, revealing an unanticipated specificity of the Gal4-Tra1 interaction.
引用
收藏
页码:1997 / 2002
页数:6
相关论文
共 50 条
[1]   MCM-GINS and MCM-MCM interactions in vivo visualised by bimolecular fluorescence complementation in fission yeast [J].
Akman, Goekhan ;
MacNeill, Stuart A. .
BMC CELL BIOLOGY, 2009, 10
[2]   NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J].
Allard, S ;
Utley, RT ;
Savard, J ;
Clarke, A ;
Grant, P ;
Brandl, CJ ;
Pillus, L ;
Workman, JL ;
Côté, J .
EMBO JOURNAL, 1999, 18 (18) :5108-5119
[3]  
[Anonymous], 1996, J COMPUT GRAPH STAT
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer [J].
Bhaumik, SR ;
Raha, T ;
Aiello, DP ;
Green, MR .
GENES & DEVELOPMENT, 2004, 18 (03) :333-343
[6]   Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo [J].
Bhaumik, SR ;
Green, MR .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (21) :7365-7371
[7]   SAGA is an essential in vivo target of the yeast acidic activator Gal4p [J].
Bhaumik, SR ;
Green, MR .
GENES & DEVELOPMENT, 2001, 15 (15) :1935-1945
[8]   Recruitment of HAT complexes by direct activator interactions with the ATM-related tra1 subunit [J].
Brown, CE ;
Howe, L ;
Sousa, K ;
Alley, SC ;
Carrozza, MJ ;
Tan, S ;
Workman, JL .
SCIENCE, 2001, 292 (5525) :2333-2337
[9]   Independent recruitment in vivo by Gal4 of two complexes required for transcription [J].
Bryant, GO ;
Ptashne, M .
MOLECULAR CELL, 2003, 11 (05) :1301-1309
[10]   The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex [J].
Drysdale, CM ;
Jackson, BM ;
McVeigh, R ;
Klebanow, ER ;
Bai, Y ;
Kokubo, T ;
Swanson, M ;
Nakatani, Y ;
Weil, PA ;
Hinnebusch, AG .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (03) :1711-1724