Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae

被引:196
作者
Buchan, J. Ross [1 ,2 ]
Yoon, Je-Hyun [2 ]
Parker, Roy [1 ,2 ]
机构
[1] Univ Arizona, Howard Hughes Med Inst, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
基金
美国国家卫生研究院;
关键词
Stress granules; P-bodies; Translation; mRNA; CYTOPLASMIC PROCESSING BODIES; MESSENGER-RNA TRANSLATION; P-BODIES; ELECTRON TRANSPORT; YEAST; INITIATION; INHIBITION; PROTEIN; EIF4G; PHOSPHORYLATION;
D O I
10.1242/jcs.078444
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Eukaryotic cells respond to cellular stresses by the inhibition of translation and the accumulation of mRNAs in cytoplasmic RNA-protein (ribonucleoprotein) granules termed stress granules and P-bodies. An unresolved issue is how different stresses affect formation of messenger RNP (mRNP) granules. In the present study, we examine how sodium azide (NaN(3)), which inhibits mitochondrial respiration, affects formation of mRNP granules as compared with glucose deprivation in budding yeast. We observed that NaN(3) treatment inhibits translation and triggers formation of P-bodies and stress granules. The composition of stress granules induced by NaN(3) differs from that of glucose-deprived cells by containing eukaryotic initiation factor (eIF)3, eIF4A/B, eIF5B and eIF1A proteins, and by lacking the heterogeneous nuclear RNP (hnRNP) protein Hrp1. Moreover, in contrast with glucose-deprived stress granules, NaN(3)-triggered stress granules show different assembly rules, form faster and independently from P-bodies and dock or merge with P-bodies over time. Strikingly, addition of NaN(3) and glucose deprivation in combination, regardless of the order, always results in stress granules of a glucose deprivation nature, suggesting that both granules share an mRNP remodeling pathway. These results indicate that stress granule assembly, kinetics and composition in yeast can vary in a stress-specific manner, which we suggest reflects different rate-limiting steps in a common mRNP remodeling pathway.
引用
收藏
页码:228 / 239
页数:12
相关论文
共 38 条
[1]   RNA granules: post-transcriptional and epigenetic modulators of gene expression [J].
Anderson, Paul ;
Kedersha, Nancy .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (06) :430-436
[2]   Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies [J].
Brengues, M ;
Teixeira, D ;
Parker, R .
SCIENCE, 2005, 310 (5747) :486-489
[3]   Accumulation of polyadenylated mRNA, Pab1, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae [J].
Brengues, Muriel ;
Parker, Roy .
MOLECULAR BIOLOGY OF THE CELL, 2007, 18 (07) :2592-2602
[4]   P bodies promote stress granule assembly in Saccharomyces cerevisiae [J].
Buchan, J. Ross ;
Muhlrad, Denise ;
Parker, Roy .
JOURNAL OF CELL BIOLOGY, 2008, 183 (03) :441-455
[5]   Eukaryotic Stress Granules: The Ins and Outs of Translation [J].
Buchan, J. Ross ;
Parker, Roy .
MOLECULAR CELL, 2009, 36 (06) :932-941
[6]   General translational repression by activators of mRNA decapping [J].
Coller, J ;
Parker, R .
CELL, 2005, 122 (06) :875-886
[7]   A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism [J].
Cuenca-Bono, Bernardo ;
Garcia-Molinero, Varinia ;
Pascual-Garcia, Pau ;
Garcia-Oliver, Encar ;
Llopis, Ana ;
Rodriguez-Navarro, Susana .
BMC CELL BIOLOGY, 2010, 11
[8]   Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae [J].
Decker, Carolyn J. ;
Teixeira, Daniela ;
Parker, Roy .
JOURNAL OF CELL BIOLOGY, 2007, 179 (03) :437-449
[9]   PHOSPHORYLATION OF INITIATION FACTOR-2-ALPHA BY PROTEIN-KINASE GCN2 MEDIATES GENE-SPECIFIC TRANSLATIONAL CONTROL OF GCN4 IN YEAST [J].
DEVER, TE ;
FENG, L ;
WEK, RC ;
CIGAN, AM ;
DONAHUE, TF ;
HINNEBUSCH, AG .
CELL, 1992, 68 (03) :585-596
[10]   Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae [J].
Dominguez, D ;
Altmann, M ;
Benz, J ;
Baumann, U ;
Trachsel, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (38) :26720-26726