Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain

被引:111
作者
Li, XY [1 ]
Green, MR [1 ]
机构
[1] UNIV MASSACHUSETTS,MED CTR,PROGRAM MOLEC MED,HOWARD HUGHES MED INST,WORCESTER,MA 01605
关键词
ATF-2; transcription activator; bZIP DNA-binding domain; activation domain; cell-type specificity;
D O I
10.1101/gad.10.5.517
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
ATF-2 is a cellular basic region-leucine zipper (bZIP) transcription factor that can mediate diverse transcriptional responses, including activation by the adenovirus E1a protein. ATF-2 contains an activation domain, required for transcriptional activity, but in the absence of an appropriate inducer, full-length ATF-2 is transcriptionally inactive. Here we have investigated the mechanism underlying this regulated inhibition of ATF-2 transcriptional activity. We show that the region of ATF-2 that suppresses the activation region is the bZIP DNA-binding domain and that maximal inhibition requires both the basic region and leucine zipper subdomains. Inhibition is activation domain specific: The ATF-2 bZIP suppresses the ATF-2 and the related E1a activation domains but not acidic- and glutamine-rich activation domains. In vitro protein interaction assays demonstrate that the ATF-2 activation domain and bZIP specifically bind to one another. Finally, we show that bZIP-mediated inhibition can be modulated in a cell-type-specific manner by another sequence element within ATF-2. On the basis of these and other data, we propose that the ATF-2 bZIP and activation domain are engaged in an inhibitory intramolecular interaction and that inducers of ATF-2 disrupt this interaction to activate transcription.
引用
收藏
页码:517 / 527
页数:11
相关论文
共 62 条
[1]   ACTIVATING TRANSCRIPTION FACTOR-II DNA-BINDING ACTIVITY IS STIMULATED BY PHOSPHORYLATION CATALYZED BY P42 AND P54 MICROTUBULE-ASSOCIATED PROTEIN-KINASES [J].
ABDELHAFIZ, HA ;
HEASLEY, LE ;
KYRIAKIS, JM ;
AVRUCH, J ;
KROLL, DJ ;
JOHNSON, GL ;
HOEFFLER, JP .
MOLECULAR ENDOCRINOLOGY, 1992, 6 (12) :2079-2089
[2]  
ABDELHAFIZ HA, 1992, ONCOGENE, V8, P1161
[3]   I-KAPPA-B - A SPECIFIC INHIBITOR OF THE NF-KAPPA-B TRANSCRIPTION FACTOR [J].
BAEUERLE, PA ;
BALTIMORE, D .
SCIENCE, 1988, 242 (4878) :540-546
[4]   CONTROL OF C-JUN ACTIVITY BY INTERACTION OF A CELL-SPECIFIC INHIBITOR WITH REGULATORY DOMAIN-DELTA - DIFFERENCES BETWEEN V-JUN AND C-JUN [J].
BAICHWAL, VR ;
TJIAN, R .
CELL, 1990, 63 (04) :815-825
[5]   THE I-KAPPA-B PROTEINS - MULTIFUNCTIONAL REGULATORS OF REL/NF-KAPPA-B TRANSCRIPTION FACTORS [J].
BEG, AA ;
BALDWIN, AS .
GENES & DEVELOPMENT, 1993, 7 (11) :2064-2070
[6]   TRANSCRIPTIONAL ACTIVATION BY THE ADENOVIRUS LARGER E1A PRODUCT IS MEDIATED BY MEMBERS OF THE CELLULAR TRANSCRIPTION FACTOR ATF FAMILY WHICH CAN DIRECTLY ASSOCIATE WITH E1A [J].
CHATTON, B ;
BOCCO, JL ;
GAIRE, M ;
HAUSS, C ;
REIMUND, B ;
GOETZ, J ;
KEDINGER, C .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (01) :561-570
[7]   ANALYSIS OF SP1 INVIVO REVEALS MULTIPLE TRANSCRIPTIONAL DOMAINS, INCLUDING A NOVEL GLUTAMINE-RICH ACTIVATION MOTIF [J].
COUREY, AJ ;
TJIAN, R .
CELL, 1988, 55 (05) :887-898
[8]  
CULP JS, 1988, P NATL ACAD SCI USA, V89, P2150
[9]   TRANSCRIPTION FACTOR INTERACTIONS - SELECTORS OF POSITIVE OR NEGATIVE REGULATION FROM A SINGLE DNA ELEMENT [J].
DIAMOND, MI ;
MINER, JN ;
YOSHINAGA, SK ;
YAMAMOTO, KR .
SCIENCE, 1990, 249 (4974) :1266-1272
[10]   MECHANISMS OF TRANSCRIPTIONAL SYNERGISM BETWEEN DISTINCT VIRUS-INDUCIBLE ENHANCER ELEMENTS [J].
DU, W ;
THANOS, D ;
MANIATIS, T .
CELL, 1993, 74 (05) :887-898