Robust polarization-based quantum key distribution over a collective-noise channel

被引:201
作者
Boileau, JC [1 ]
Gottesman, D
Laflamme, R
Poulin, D
Spekkens, RW
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada
关键词
D O I
10.1103/PhysRevLett.92.017901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present two polarization-based protocols for quantum key distribution. The protocols encode key bits in noiseless subspaces or subsystems and so can function over a quantum channel subjected to an arbitrary degree of collective noise, as occurs, for instance, due to rotation of polarizations in an optical fiber. These protocols can be implemented using only entangled photon-pair sources, single-photon rotations, and single-photon detectors. Thus, our proposals offer practical and realistic alternatives to existing schemes for quantum key distribution over optical fibers without resorting to interferometry or two-way quantum communication, thereby circumventing, respectively, the need for high precision timing and the threat of Trojan horse attacks.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Classical and quantum communication without a shared reference frame [J].
Bartlett, SD ;
Rudolph, T ;
Spekkens, RW .
PHYSICAL REVIEW LETTERS, 2003, 91 (02)
[2]  
Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]  
CABELLO A, QUANTPH0303076
[5]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[6]   Proof of security of quantum key distribution with two-way classical communications [J].
Gottesman, D ;
Lo, HK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (02) :457-475
[7]   Practical free-space quantum key distribution over 10 km in daylight and at night [J].
Hughes, RJ ;
Nordholt, JE ;
Derkacs, D ;
Peterson, CG .
NEW JOURNAL OF PHYSICS, 2002, 4 :43.1-43.14
[8]   Theory of decoherence-free fault-tolerant universal quantum computation [J].
Kempe, J ;
Bacon, D ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW A, 2001, 63 (04) :1-29
[9]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528
[10]   Experimental verification of decoherence-free subspaces [J].
Kwiat, PG ;
Berglund, AJ ;
Altepeter, JB ;
White, AG .
SCIENCE, 2000, 290 (5491) :498-501