Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease

被引:14
作者
Kramer, Elizabeth L.
Hardie, William D. [2 ]
Mushaben, Elizabeth M.
Acciani, Thomas H.
Pastura, Patricia A.
Korfhagen, Thomas R.
Hershey, Gurjit Khurana [3 ]
Whitsett, Jeffrey A.
Le Cras, Timothy D. [1 ]
机构
[1] Univ Cincinnati, Dept Pediat, Cincinnati Childrens Hosp Med Ctr, Sect Neonatol Perinatal & Pulm Biol,Div Pulm Biol, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Dept Pediat, Cincinnati Childrens Hosp Med Ctr, Div Pulm Med, Cincinnati, OH 45229 USA
[3] Univ Cincinnati, Dept Pediat, Cincinnati Childrens Hosp Med Ctr, Div Asthma Res, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
mammalian target of rapamycin; airway smooth muscle; epidermal growth factor receptor; transforming growth factor-alpha; airway hyperresponsiveness; EPIDERMAL-GROWTH-FACTOR; INDUCED PULMONARY-FIBROSIS; MUSCLE-CELL-PROLIFERATION; FACTOR-ALPHA; FACTOR RECEPTOR; BRONCHIAL THERMOPLASTY; CHILDHOOD ASTHMA; MICE; SIROLIMUS; INFLAMMATION;
D O I
10.1152/japplphysiol.00737.2011
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Kramer EL, Hardie WD, Mushaben EM, Acciani TH, Pastura PA, Korfhagen TR, Hershey GK, Whitsett JA, Le Cras TD. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease. J Appl Physiol 111: 1760-1767, 2011. First published September 8, 2011; doi:10.1152/japplphysiol.00737.2011.-Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-alpha (TGF-alpha) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-alpha Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-alpha Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-alpha induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-alpha induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-alpha/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for alpha-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-alpha expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-alpha-induced/EGF receptor-mediated reactive airway disease.
引用
收藏
页码:1760 / 1767
页数:8
相关论文
共 53 条
[1]   Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway [J].
Amishima, M ;
Munakata, M ;
Nasuhara, Y ;
Sato, A ;
Takahashi, T ;
Homma, Y ;
Kawakami, Y .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1998, 157 (06) :1907-1912
[2]  
Baroffio Michele, 2009, Ther Adv Respir Dis, V3, P163, DOI 10.1177/1753465809343595
[3]   The synergistic interactions of allergic lung inflammation and intratracheal cationic protein [J].
Bates, Jason H. T. ;
Cojocaru, Ana ;
Haverkamp, Hans C. ;
Rinaldi, Lisa M. ;
Irvin, Charles G. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2008, 177 (03) :261-268
[4]   Clinical phenotypes of asthma [J].
Bel, EH .
CURRENT OPINION IN PULMONARY MEDICINE, 2004, 10 (01) :44-50
[5]   The contribution of transforming growth factor-β and epidermal growth factor signalling to airway remodelling in chronic asthma [J].
Boxall, C ;
Holgate, ST ;
Davies, DE .
EUROPEAN RESPIRATORY JOURNAL, 2006, 27 (01) :208-229
[6]   MYOFIBROBLASTS AND SUBEPITHELIAL FIBROSIS IN BRONCHIAL-ASTHMA [J].
BREWSTER, CEP ;
HOWARTH, PH ;
DJUKANOVIC, R ;
WILSON, J ;
HOLGATE, ST ;
ROCHE, WR .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1990, 3 (05) :507-511
[7]   Epidermal growth factor receptor-mediated innate immune responses and their roles in airway diseases [J].
Burgel, P-R. ;
Nadel, J. A. .
EUROPEAN RESPIRATORY JOURNAL, 2008, 32 (04) :1068-1081
[8]   Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium [J].
Burgel, PR ;
Nadel, JA .
THORAX, 2004, 59 (11) :992-996
[9]  
Corrigan Chris J, 2002, Am J Respir Med, V1, P47
[10]   Asthma control during the year after bronchial thermoplasty [J].
Cox, Gerard ;
Thomson, Neil C. ;
Rubin, Adalberto S. ;
Niven, Robert M. ;
Corris, Paul A. ;
Siersted, Hans Christian ;
Olivenstein, Ronald ;
Pavord, Ian D. ;
McCormack, David ;
Chaudhuri, Rekha ;
Miller, John D. ;
Laviolette, Michel ;
Busse, W. ;
Schellenberg, R. ;
Slutsky, A. S. ;
Nair, P. ;
Goodwin, S. ;
Currie, K. ;
Bourbeau, J. ;
Houghton, F. ;
Patterson, N. ;
Metha, S. ;
Howard, J. ;
MacBean, L. ;
Martel, S. ;
Boulet, L. -P. ;
Morel, L. ;
Trepanier, L. ;
Bicknell, S. ;
Livingston, E. ;
Lafferty, J. ;
Prys-Picard, C. ;
Fletcher, G. ;
Higgins, B. ;
Small, T. ;
Foggo, B. ;
Berry, M. ;
Shaw, D. ;
Sheldon, N. ;
Barnes, N. ;
Watson, D. ;
Cardoso, P. G. ;
Soares, P. R. D. ;
Rasmussen, F. ;
Christensen, H. M. ;
Olsen, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (13) :1327-1337