Identification of influential spreaders in complex networks

被引:474
作者
Kitsak, Maksim [3 ,4 ,5 ]
Gallos, Lazaros K. [1 ,2 ]
Havlin, Shlomo [6 ,7 ]
Liljeros, Fredrik [8 ]
Muchnik, Lev [9 ]
Stanley, H. Eugene [3 ,4 ]
Makse, Hernan A. [1 ,2 ]
机构
[1] CUNY City Coll, Levich Inst, New York, NY 10031 USA
[2] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[3] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
[5] Univ Calif San Diego, Cooperat Assoc Internet Data Anal CAIDA, La Jolla, CA 92093 USA
[6] Bar Ilan Univ, Minerva Ctr, Ramat Gan, Israel
[7] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[8] Stockholm Univ, Dept Sociol, S-10691 Stockholm, Sweden
[9] NYU, Stern Sch Business, Informat Operat & Management Sci Dept, New York, NY 10012 USA
基金
以色列科学基金会; 美国国家科学基金会;
关键词
INTERNET; CENTRALITY;
D O I
10.1038/NPHYS1746
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Networks portray a multitude of interactions through which people meet, ideas are spread and infectious diseases propagate within a society(1-5). Identifying the most efficient 'spreaders' in a network is an important step towards optimizing the use of available resources and ensuring the more efficient spread of information. Here we show that, in contrast to common belief, there are plausible circumstances where the best spreaders do not correspond to the most highly connected or the most central people(6-10). Instead, we find that the most efficient spreaders are those located within the core of the network as identified by the k-shell decomposition analysis(11-13), and that when multiple spreaders are considered simultaneously the distance between them becomes the crucial parameter that determines the extent of the spreading. Furthermore, we show that infections persist in the high-k shells of the network in the case where recovered individuals do not develop immunity. Our analysis should provide a route for an optimal design of efficient dissemination strategies.
引用
收藏
页码:888 / 893
页数:6
相关论文
共 27 条
  • [1] Error and attack tolerance of complex networks
    Albert, R
    Jeong, H
    Barabási, AL
    [J]. NATURE, 2000, 406 (6794) : 378 - 382
  • [2] Alvarez-Hamelin J. I., 2006, P 18 INT C NEUR INF, P41
  • [3] ANDERSON R M, 1991
  • [4] ANGELESSERRANO M, 2006, PHYS REV E, V74
  • [5] [Anonymous], 1984, Gonorrhea Transmission Dynamics and Control
  • [6] Bollobas B., 1984, GRAPH THEOR COMB P C, V35
  • [7] Caldarelli Guido., 2007, Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science, DOI 10.1142/6455
  • [8] A model of Internet topology using k-shell decomposition
    Carmi, Shai
    Havlin, Shlomo
    Kirkpatrick, Scott
    Shavitt, Yuval
    Shir, Eran
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (27) : 11150 - 11154
  • [9] Statistical physics of social dynamics
    Castellano, Claudio
    Fortunato, Santo
    Loreto, Vittorio
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 591 - 646
  • [10] Breakdown of the internet under intentional attack
    Cohen, R
    Erez, K
    ben-Avraham, D
    Havlin, S
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (16) : 3682 - 3685