Identification of physical processes inherent in artificial neural network rainfall runoff models

被引:138
作者
Jain, A [1 ]
Sudheer, KP
Srinivasulu, S
机构
[1] Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Civil Engn, Madras 600036, Tamil Nadu, India
[3] JNT Univ, Inst Post Grad Studies & Res, Hyderabad, Andhra Pradesh, India
关键词
artificial neural networks; rainfall-runoff process; hydrologic systems modelling; black-box models;
D O I
10.1002/hyp.5502
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The emergence of artificial neural network (ANN) technology has provided many promising results in the field of hydrology and water resources simulation. However, one of the major criticisms of ANN hydrologic models is that they do not consider/explain the underlying physical processes in a watershed, resulting in them being labelled as black-box models. This paper discusses a research study conducted in order to examine whether or not the physical processes in a watershed are inherent in a trained ANN rainfall-runoff model. The investigation is based on analysing definite statistical measures of strength of relationship between the disintegrated hidden neuron responses of an ANN model and its input variables, as well as various deterministic components of a conceptual rainfall-runoff model. The approach is illustrated by presenting a case study for the Kentucky River watershed. The results suggest that the distributed structure of the ANN is able to capture certain physical behaviour of the rainfall-runoff process. The results demonstrate that the hidden neurons in the ANN rainfall-runoff model approximate various components of the hydrologic system, such as infiltration, base How, and delayed and quick surface flow, etc., and represent the rising limb and different portions of the falling limb of a flow hydrograph. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:571 / 581
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1986, PARALLEL DISTRIBUTED
[2]   Are artificial neural networks black boxes? [J].
Benitez, JM ;
Castro, JL ;
Requena, I .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05) :1156-1164
[3]  
Bishop C. M., 1996, Neural networks for pattern recognition
[4]  
Brown M, 1994, NEUROFUZZY ADAPTIVE
[5]   Interpretation of artificial neural networks by means of fuzzy rules [J].
Castro, JL ;
Mantas, CJ ;
Benítez, JM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01) :101-116
[6]  
DAWSON DW, 2001, PROGR PHYS GEOGRAPHY, V25, P8
[7]  
EBERHART RC, 1990, NEURAL NETWORK PC TO
[8]  
Govindaraju RS, 2000, J HYDROL ENG, V5, P124
[9]  
Govindaraju RS, 2000, J HYDROL ENG, V5, P115
[10]  
JAIN A, 1994, THESIS U KENTUCKY LE