A Systems Biology Approach Identifies a R2R3 MYB Gene Subfamily with Distinct and Overlapping Functions in Regulation of Aliphatic Glucosinolates

被引:272
作者
Sonderby, Ida Elken [2 ]
Hansen, Bjarne Gram [2 ]
Bjarnholt, Nanna [2 ]
Ticconi, Carla [1 ]
Halkier, Barbara Ann [2 ]
Kliebenstein, Daniel J. [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Univ Copenhagen, Plant Biochem Lab, Dept Plant Biol, Ctr Mol Plant Physiol PlaCe,Fac Life Sci, Copenhagen, Denmark
来源
PLOS ONE | 2007年 / 2卷 / 12期
基金
新加坡国家研究基金会;
关键词
D O I
10.1371/journal.pone.0001322
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. Methodology/Principal Findings. MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL) and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL), as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. Conclusions/Significance. It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to study the evolution of MYB regulatory factors and their downstream targets.
引用
收藏
页数:16
相关论文
共 63 条
[1]   A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J].
Agarwal, Manu ;
Hao, Yujin ;
Kapoor, Avnish ;
Dong, Chun-Hai ;
Fujii, Hiroaki ;
Zheng, Xianwu ;
Zhu, Jian-Kang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) :37636-37645
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]  
Basten C.J., 1999, QTL Cartographer (Version 1.13)
[4]   A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis [J].
Bender, J ;
Fink, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5655-5660
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 homolog causes defects in the induction of secondary metabolite biosynthesis [J].
Bennett, RN ;
Wenke, T ;
Freudenberg, B ;
Mellon, FA ;
Ludwig-Müller, J .
PLANT BIOLOGY, 2005, 7 (04) :348-357
[7]   Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora [J].
Brader, G ;
Tas, É ;
Palva, ET .
PLANT PHYSIOLOGY, 2001, 126 (02) :849-860
[8]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755
[9]   Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana [J].
Brown, PD ;
Tokuhisa, JG ;
Reichelt, M ;
Gershenzon, J .
PHYTOCHEMISTRY, 2003, 62 (03) :471-481
[10]   The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis [J].
Celenza, JL ;
Quiel, JA ;
Smolen, GA ;
Merrikh, H ;
Silvestro, AR ;
Normanly, J ;
Bender, J .
PLANT PHYSIOLOGY, 2005, 137 (01) :253-262