Postnatal environment can counteract prenatal effects on cognitive ability, cell proliferation, and synaptic protein expression

被引:113
作者
Koo, JW
Park, CH
Choi, SH
Kim, NJ
Kim, HS
Choe, JC
Suh, YH
机构
[1] Seoul Natl Univ, Coll Med, Dept Pharmacol, Natl Creat Res Initiat Ctr Alzheimers Dementia, Seoul 110799, South Korea
[2] Seoul Natl Univ, MRC, Neurosci Res Inst, Seoul 110799, South Korea
关键词
prenatal environment; enrichment; stress;
D O I
10.1096/fj.02-1032fje
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many environmental factors during the pre- or postnatal period can affect an individual's cognitive function and neural development throughout life. Little is known, however, about the combined effects of the pre- and postnatal environments on cognitive function of adult offspring and structural alterations in the adult brain. In this study, we confirmed that pre- or postnatal stress impaired learning and memory performance of rats. Conversely, pre- or postnatal enriched housing improved behavioral performance. These experience-dependent behavioral alterations were consistent with changes in 5-bromo-2'-deoxyuridine-labeled cell number in the granule cell layer of the hippocampus and in the expression level of synaptic markers such as neuronal cell adhesion molecule and synaptophysin, and expression of a neurotrophic factor, brain-derived neurotrophic factor. Postnatal stress appeared to have no influence on cell proliferation, however. We did find that postnatal environment could attenuate prenatal effects partly via a longitudinal cross-housing study, in which pups born to mothers housed under enriched conditions were reared under stressful conditions and vice versa. These results suggest that postnatal environmental manipulations can counteract the cognitive alterations in early adulthood and the structural changes in the young adult brain induced by prenatal experience.
引用
收藏
页码:1556 / +
页数:27
相关论文
共 57 条
[1]   Making memories stick: cell-adhesion molecules in synaptic plasticity [J].
Benson, DL ;
Schnapp, LM ;
Shapiro, L ;
Huntley, GW .
TRENDS IN CELL BIOLOGY, 2000, 10 (11) :473-482
[2]   Prenatal alcohol exposure and the effects of environmental enrichment on hippocampal dendritic spine density [J].
Berman, RF ;
Hannigan, JH ;
Sperry, MA ;
Zajac, CS .
ALCOHOL, 1996, 13 (02) :209-216
[3]   Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain [J].
Biebl, M ;
Cooper, CM ;
Winkler, J ;
Kuhn, HG .
NEUROSCIENCE LETTERS, 2000, 291 (01) :17-20
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine [J].
Czéh, B ;
Michaelis, T ;
Watanabe, T ;
Frahm, J ;
de Biurrun, G ;
van Kampen, M ;
Bartolomucci, A ;
Fuchs, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12796-12801
[6]   Stress and glucocorticoids impair retrieval of long-term spatial memory [J].
de Quervain, DJF ;
Roozendaal, B ;
McGaugh, JL .
NATURE, 1998, 394 (6695) :787-790
[7]   Neural plasticity to stress and antidepressant treatment [J].
Duman, RS ;
Malberg, J ;
Thome, J .
BIOLOGICAL PSYCHIATRY, 1999, 46 (09) :1181-1191
[8]   Opiates inhibit neurogenesis in the adult rat hippocampus [J].
Eisch, AJ ;
Barrot, M ;
Schad, CA ;
Self, DW ;
Nestler, EJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7579-7584
[9]   Neural cell adhesion molecules in activity-dependent development and synaptic plasticity [J].
Fields, RD ;
Itoh, K .
TRENDS IN NEUROSCIENCES, 1996, 19 (11) :473-480
[10]   Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus [J].
Figurov, A ;
PozzoMiller, LD ;
Olafsson, P ;
Wang, T ;
Lu, B .
NATURE, 1996, 381 (6584) :706-709