Exploiting Social Tagging in a Web 2.0 Recommender System

被引:17
作者
Belen Barragans-Martinez, Ana [1 ]
Rey-Lopez, Marta
Costa-Montenegro, Enrique [2 ]
Mikic-Fonte, Fernando A. [2 ]
Burguillo, Juan C. [2 ]
Peleteiro, Ana [3 ]
机构
[1] Ctr Univ Defensa, Escuela Naval Militar Marin Pontevedra, Pontevedra, Spain
[2] Univ Vigo, Dept Telemat Engn, Vigo, Spain
[3] Univ Vigo, Dept Telemat, Vigo, Spain
关键词
collaborative filtering; content-based filtering; folksonomy; Internet computing; recommendation systems; tag-based recommenders; Web; 2.1;
D O I
10.1109/MIC.2010.104
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recommender systems help users cope with information overload by using their preferences to recommend items. To date, most recommenders have employed user ratings, information about user profiles, or metadata describing the items. To take advantage of Web 2.0 applications, the authors propose using information obtained from social tagging to improve recommendations. The Web 2.0 TV program recommender queveo.tv currently combines content-based and collaborative filtering techniques. This article presents a novel tag-based recommender to enhance the recommending engine by improving the coverage and diversity of the suggestions.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 13 条
[1]   What's on TV Tonight? An Efficient and Effective Personalized Recommender System of TV Programs [J].
Barragans Martinez, Ana Belen ;
Pazos Arias, Jose J. ;
Fernandez Vilas, Ana ;
Garcia Duque, Jorge ;
Lopez Nores, Martin .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (01) :286-294
[2]  
Golub G., 2013, J HOPKINS STUDIES MA
[3]  
Huizhi Liang, 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, P59, DOI 10.1109/WIIAT.2008.97
[4]  
Michlmayr E, 2007, P 1 INT C WEBL SOC M
[5]   Social tagging in recommender systems: a survey of the state-of-the-art and possible extensions [J].
Milicevic, Aleksandra Klasnja ;
Nanopoulos, Alexandros ;
Ivanovic, Mirjana .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (03) :187-209
[6]  
Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325
[7]  
Resnick P, 1994, CSCW 94 P C COMPUTER, P175, DOI DOI 10.1145/192844.192905
[8]  
Rey-López M, 2010, STUD COMPUT INTELL, V273, P125
[9]  
Sarwar B, 2001, P 10 INT C WORLD WID, P285, DOI [10.1145/371920.372071, DOI 10.1145/371920.372071]
[10]  
*TV ANYT FOR, 2004, 102822 ETSI TS TV AN