Meagre functions and asymptotic behaviour of dynamical systems

被引:18
作者
Desch, W
Logemann, H
Ryan, EP [1 ]
Sontag, ED
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Graz Univ, Math Inst, A-8010 Graz, Austria
[3] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
asymptotic behaviour; dynamical systems; invariance principles; stability;
D O I
10.1016/S0362-546X(99)00323-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Presents the asymptotic behavior of dynamical systems. The technical lemmas on meagre functions and the abstract semiflow were derived. These were derived under the assumption that the underlying space X was a metric space. Results remained true if X was a topological space or a sequential-convergence space or limit space.
引用
收藏
页码:1087 / 1109
页数:23
相关论文
共 15 条
[1]  
Ball J. M., 1974, Journal of Functional Analysis, V17, P91, DOI 10.1016/0022-1236(74)90006-8
[3]  
Barbalat I., 1959, REV ROUMAINE MATH PU, V4, P267
[4]   AN INTEGRAL-INVARIANCE PRINCIPLE FOR NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
MARTIN, CF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (06) :983-994
[5]  
Datko R., 1970, Journal of Mathematical Analysis and Applications, V32, P610, DOI 10.1016/0022-247X(70)90283-0
[6]  
Filippov A., 1962, Journal of the Society for Industrial and Applied Mathematics, Series A: Control, V1, P76, DOI 10.1137/0301006
[7]   EQUIVALENCE OF LP STABILITY AND EXPONENTIAL STABILITY FOR A CLASS OF NONLINEAR SEMIGROUPS [J].
ICHIKAWA, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (07) :805-815
[8]   A smooth converse Lyapunov theorem for robust stability [J].
Lin, YD ;
Sontag, ED ;
Wang, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (01) :124-160
[9]   STABILITY AND STABILIZABILITY OF INFINITE DIMENSIONAL SYSTEMS [J].
PRITCHARD, AJ ;
ZABCZYK, J .
SIAM REVIEW, 1981, 23 (01) :25-52
[10]   ON UNIFORM N-EQUISTABILITY [J].
ROLEWICZ, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (02) :434-441