Comparison of several difference schemes on 1D and 2D test problems for the Euler equations

被引:254
作者
Liska, R
Wendroff, B
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic
[2] Los Alamos Natl Lab, Grp T7, Los Alamos, NM 87544 USA
关键词
Euler equations; Riemann problems; finie difference schemes; splitting;
D O I
10.1137/S1064827502402120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The results of computations with eight explicit finite difference schemes on a suite of one-dimensional and two-dimensional test problems for the Euler equations are presented in various formats. Both dimensionally split and two-dimensional schemes are represented, as are central and upwind-biased methods, and all are at least second-order accurate.
引用
收藏
页码:995 / 1017
页数:23
相关论文
共 54 条
[1]  
ABOUZIAROV M, 2002, HYP 2002 9 INT C HYP, P162
[2]  
ARMINJON P, 1995, P 6 INT S CFD LAK TA, V4, P7
[3]  
ASLAM T, 2001, COMMUNICATION
[4]   On WAF-type schemes for multidimensional hyperbolic conservation laws [J].
Billett, SJ ;
Toro, EF .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (01) :1-24
[5]  
BLONDIN J, VH1 VIRGINIA NUMERIC
[6]   The construction of compatible hydrodynamics algorithms utilizing conservation of total energy [J].
Caramana, EJ ;
Burton, DE ;
Shashkov, MJ ;
Whalen, PP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :227-262
[7]   The space-time conservation element and solution element method: A new high-resolution and genuinely multidimensional paradigm for solving conservation laws [J].
Chang, SC ;
Wang, XY ;
Chow, CY .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 156 (01) :89-136
[8]   THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS [J].
COLELLA, P ;
WOODWARD, PR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :174-201
[9]  
Dafermos C., 1991, HYPERBOLIC CONSERVAT
[10]  
Godlewski E., 1996, NUMERICAL APPROXIMAT