Processing symplectic methods for near-integrable Hamiltonian systems

被引:19
作者
Blanes, S [1 ]
Casas, F
Ros, J
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
[2] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Spain
[3] Univ Valencia, IFIC, E-46100 Burjassot, Spain
关键词
symplectic integrators; processing technique; near-integrable Hamiltonian systems;
D O I
10.1023/A:1008311025472
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Processing techniques are used to approximate the exact flow of near-integrable Hamiltonian systems depending on a small perturbation parameter. We study the reduction of the number of conditions for the kernel for this type of Hamiltonians and we build third, fourth and fifth order methods which are shown to be more efficient than previous algorithms for the same class of problems.
引用
收藏
页码:17 / 35
页数:19
相关论文
共 28 条
[1]  
[Anonymous], 1991, CELEST MECH DYN ASTR
[2]  
[Anonymous], INTEGRATION ALGORITH
[3]   Symplectic integration with processing: A general study [J].
Blanes, S ;
Casas, F ;
Ros, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :711-727
[4]  
BLANES S, 1998, THESIS U VALENCIA
[5]  
Butcher J C., 1969, Conference on the numerical solution of differential equations, P133
[6]  
Danby JMA., 1988, FUNDAMENTALS CELESTI
[7]   SYMPLECTIC INTEGRATORS FOR LONG-TERM INTEGRATIONS IN CELESTIAL MECHANICS [J].
Gladman, Brett ;
Duncan, Martin ;
Candy, Jeff .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (03) :221-240
[8]   AN ODE-SOLVER BASED ON THE METHOD OF AVERAGING [J].
KIRCHGRABER, U .
NUMERISCHE MATHEMATIK, 1988, 53 (06) :621-652
[9]  
KOSELEFF PV, 1994, THESIS L BERKELEY LA