Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1

被引:61
作者
Chen, XH [1 ]
Agarwal, A [1 ]
Giedroc, DP [1 ]
机构
[1] Texas A&M Univ, Ctr Macromol Design, Dept Biochem & Biophys, College Stn, TX 77843 USA
关键词
D O I
10.1021/bi980843r
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MRE-binding transcription factor-1 (MTF-1) activates the expression of metallothionein (MT) genes in mouse and human cells upon binding to one or more tandem metal-response elements (MREs; 5'-ctnTGCRCnCgGCCc) in the MT promoter. MTF-1 contains six Cys(2)-His(2) zinc finger sequences. Previous work suggests that the zinc finger domain itself may function as a zinc sensor in zinc-activated expression of MTs. To obtain molecular insight into MTF-1 function, a recombinant fragment of MTF-1 containing only the zinc finger domain (denoted MTF-zf) has been purified using nondenaturing conditions and characterized with respect to zinc-binding properties, secondary structure, and DNA-binding activity. Different preparations of MTF-zf, following an anaerobic dialysis to quantify Zn(II) and reduced cysteine (by DTNB reactivity) content, reveal Zn(II)/MTF-zf stoichiometries ranging from 3.3 to 5.5 g at Zn(II) and 11-13 reduced thiolates (12 expected). Far-UV CD spectra reveal indistinguishable secondary structural content in all preparations, i.e., enough to fold just three of six zinc fingers of MTF-zf. Removal of additional zinc from MTF-zf gives rise to an insoluble apoprotein. Complex formation between a Zn-5.5 MTF-zf and a coumarin-labeled MREd-containing oligonucleotide as monitored by changes in the anisotropy of the coumarin fluorescence gives a K-app = 3.8 (+/-0.5) x 10(8) M-1 (pH 7.0, 0.20 M NaCl, 25 degrees C). Investigation of the salt type and concentration dependence of K-app suggests significant contributions from both cation and anion release upon complex formation. Zn-5.5 MTF-zf exhibits a large negative heat capacity of complex formation with MREd and can discriminate among DNA duplexes which have mutations deposited on either the TGCRC core or the C-rich side of the MREd. Air oxidation of Zn-5.5 MTF-zf results in the reversible conversion of 6 of the 12 Cys thiolates to 3 disulfide bonds; as expected, this has no effect on the secondary structure of MTF-zf, but results in approximate to 30-fold reduction in K-app to approximate to 1.2 x 10(7) M-1. In contrast, fully reduced Zn-3.5 MTF-zf binds to the MREd with an affinity and [NaCl] dependence largely indistinguishable from those of Zn-5.5 MTF-zf. The zinc fingers in MTF-zf are physically and functionally inequivalent, A subset (approximate to 3-4) of zinc fingers plays a structural role in folding and high-affinity MREd binding, while one or more additional fingers have properties potentially consistent with a metalloregulatory role.
引用
收藏
页码:11152 / 11161
页数:10
相关论文
共 44 条
  • [1] The galvanization of biology: A growing appreciation for the roles of zinc
    Berg, JM
    Shi, YG
    [J]. SCIENCE, 1996, 271 (5252) : 1081 - 1085
  • [2] The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals
    Bittel, D
    Dalton, T
    Samson, SLA
    Gedamu, L
    Andrews, GK
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (12) : 7127 - 7133
  • [3] CLONING, CHROMOSOMAL MAPPING AND CHARACTERIZATION OF THE HUMAN METAL-REGULATORY TRANSCRIPTION FACTOR MTF-1
    BRUGNERA, E
    GEORGIEV, O
    RADTKE, F
    HEUCHEL, R
    BAKER, E
    SUTHERLAND, GR
    SCHAFFNER, W
    [J]. NUCLEIC ACIDS RESEARCH, 1994, 22 (15) : 3167 - 3173
  • [4] RELATIVE CONTRIBUTIONS OF THE ZINC FINGERS OF TRANSCRIPTION FACTOR IIIA TO THE ENERGETICS OF DNA-BINDING
    CLEMENS, KR
    ZHANG, PH
    LIAO, XB
    MCBRYANT, SJ
    WRIGHT, PE
    GOTTESFELD, JM
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1994, 244 (01) : 23 - 35
  • [5] TRANSCRIPTIONAL INDUCTION OF THE MOUSE METALLOTHIONEIN-I GENE IN HYDROGEN PEROXIDE-TREATED HEPA CELLS INVOLVES A COMPOSITE MAJOR LATE TRANSCRIPTION FACTOR ANTIOXIDANT RESPONSE ELEMENT AND METAL RESPONSE PROMOTER ELEMENTS
    DALTON, T
    PALMITER, RD
    ANDREWS, GK
    [J]. NUCLEIC ACIDS RESEARCH, 1994, 22 (23) : 5016 - 5023
  • [6] Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain
    Dalton, TP
    Bittel, D
    Andrews, GK
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (05) : 2781 - 2789
  • [7] DALTON TP, 1996, J BIOL CHEM, V271, P25233
  • [8] THE ROLE OF ZINC FINGERS IN TRANSCRIPTIONAL ACTIVATION BY TRANSCRIPTION FACTOR-IIIA
    DELRIO, S
    SETZER, DR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (01) : 168 - 172
  • [9] METALLOREGULATION OF THE CYANOBACTERIAL SMT LOCUS - IDENTIFICATION OF SMTB BINDING-SITES AND DIRECT INTERACTION WITH METALS
    ERBE, JL
    TAYLOR, KB
    HALL, LM
    [J]. NUCLEIC ACIDS RESEARCH, 1995, 23 (13) : 2472 - 2478
  • [10] THE CRYSTAL-STRUCTURE OF A 2 ZINC-FINGER PEPTIDE REVEALS AN EXTENSION TO THE RULES FOR ZINC-FINGER DNA RECOGNITION
    FAIRALL, L
    SCHWABE, JWR
    CHAPMAN, L
    FINCH, JT
    RHODES, D
    [J]. NATURE, 1993, 366 (6454) : 483 - 487