Both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons

被引:68
作者
Margolis, EB
Hjelmstad, GO
Bonci, A
Fields, HL
机构
[1] Univ Calif San Francisco, Ernest Gallo Clin & Res Ctr, Emeryville, CA 94608 USA
[2] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Wheeler Ctr Neurobiol Addict, San Francisco, CA 94143 USA
关键词
D O I
10.1152/jn.00855.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The ventral tegmental area (VTA) plays a critical role in motivation and reinforcement. Kappa and mu opioid receptor (KOP-R and MOP-R) agonists microinjected into the VTA produce powerful and largely opposing motivational actions. Glutamate transmission within the VTA contributes to these motivational effects. Therefore information about opioid control of glutamate release onto VTA neurons is important. To address this issue, we performed whole cell patch-clamp recordings in VTA slices and measured excitatory postsynaptic currents (EPSCs). There are several classes of neuron in the VTA: principal, secondary, and tertiary. The KOP-R agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593; 1 mu M) produced a small reduction in EPSC amplitude in principal neurons (14%) and a significantly larger inhibition in secondary (47%) and tertiary (33%) neurons. The MOP-R agonist [D-Ala(2), N-Me-Phe(4), Gly-ol(5)]-enkephalin (DAMGO; 3 mu M) inhibited glutamate release in principal (42%), secondary (45%), and tertiary neurons (35%). Unlike principal and tertiary neurons, in secondary neurons, the magnitude of the U69593 EPSC inhibition was positively correlated with that produced by DAMGO. Finally, DAMGO did not occlude the U69593 effect in principal neurons, suggesting that some glutamatergic terminals are independently controlled by KOP and MOP receptor activation. These findings show that MOP-R and KOP-R agonists regulate excitatory input onto each VTA cell type.
引用
收藏
页码:3086 / 3093
页数:8
相关论文
共 43 条
[1]   THE KAPPA-OPIOID RECEPTOR IS PRIMARILY POSTSYNAPTIC - COMBINED IMMUNOHISTOCHEMICAL LOCALIZATION OF THE RECEPTOR AND ENDOGENOUS OPIOIDS [J].
ARVIDSSON, U ;
RIEDL, M ;
CHAKRABARTI, S ;
VULCHANOVA, L ;
LEE, JH ;
NAKANO, AH ;
LIN, XQ ;
LOH, HH ;
LAW, PY ;
WESSENDORF, MW ;
ELDE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :5062-5066
[2]  
BALSKUBIK R, 1993, J PHARMACOL EXP THER, V264, P489
[3]  
Bie BH, 2003, J NEUROSCI, V23, P7262
[4]  
Bonci A, 1999, J NEUROSCI, V19, P3723
[5]   A subset of ventral tegmental area neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids [J].
Cameron, DL ;
Wessendorf, MW ;
Williams, JT .
NEUROSCIENCE, 1997, 77 (01) :155-166
[6]   Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons [J].
Carr, DB ;
Sesack, SR .
JOURNAL OF NEUROSCIENCE, 2000, 20 (10) :3864-3873
[7]  
Charara A, 1996, J COMP NEUROL, V364, P254
[8]   TONIC ACTIVATION OF NMDA RECEPTORS CAUSES SPONTANEOUS BURST DISCHARGE OF RAT MIDBRAIN DOPAMINE NEURONS INVIVO [J].
CHERGUI, K ;
CHARLETY, PJ ;
AKAOKA, H ;
SAUNIER, CF ;
BRUNET, JL ;
BUDA, M ;
SVENSSON, TH ;
CHOUVET, G .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1993, 5 (02) :137-144
[9]   Orexin (hypocretin) neurons contain dynorphin [J].
Chou, TC ;
Lee, CE ;
Lu, J ;
Elmquist, JK ;
Hara, J ;
Willie, JT ;
Beuckmann, CT ;
Chemelli, RM ;
Sakurai, T ;
Yanagisawa, M ;
Saper, CB ;
Scammell, TE .
JOURNAL OF NEUROSCIENCE, 2001, 21 (19)
[10]   EXCITOTOXIN LESIONS SUGGEST AN ASPARTATERGIC PROJECTION FROM RAT MEDIAL PREFRONTAL CORTEX TO VENTRAL TEGMENTAL AREA [J].
CHRISTIE, MJ ;
BRIDGE, S ;
JAMES, LB ;
BEART, PM .
BRAIN RESEARCH, 1985, 333 (01) :169-172