Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice

被引:80
作者
Fu, Zhuo [1 ]
Zhen, Wei [1 ]
Yuskavage, Julia [1 ]
Liu, Dongmin [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Corp Res Ctr, Coll Agr & Life Sci, Dept Human Nutr Foods & Exercise, Blacksburg, VA 24060 USA
基金
美国国家卫生研究院;
关键词
Type; 1; diabetes; Epigallocatechin gallate; Non-obese diabetic mice; Human islets; NITRIC-OXIDE SYNTHASE; PANCREATIC BETA-CELLS; CYTOKINE-INDUCED APOPTOSIS; GREEN TEA POLYPHENOLS; NOD MICE; GLUCOSE-TOLERANCE; CARDIOVASCULAR HEALTH; KAPPA-B; CATECHINS; (-)-EPIGALLOCATECHIN-3-GALLATE;
D O I
10.1017/S0007114510004824
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Type 1 diabetes (T1D) results from the autoimmune-mediated destruction of pancreatic beta-cells, leading to deficiency of insulin production. Successful islet transplantation can normalise hyperglycaemia in T1D patients; however, the limited availability of the islets, loss of islet cell mass through apoptosis after islet isolation and potential autoimmune destruction of the transplanted islets prevent the widespread use of this procedure. Therefore, the search for novel and cost-effective agents that can prevent or treat T1D is extremely important to decrease the burden of morbidity from this disease. In the present study, we discovered that (-)-epigallocatechin gallate (EGCG, 0.05% in drinking-water), the primary polyphenolic component in green tea, effectively delayed the onset of T1D in non-obese diabetic (NOD) mice. At 32 weeks of age, eight (66.7%) out of twelve mice in the control group developed diabetes, whereas only three (25%) out of twelve mice in the EGCG-treated group became diabetic (P<0.05). Consistently, mice supplemented with EGCG had significantly higher plasma insulin levels and survival rate but lower glycosylated Hb concentrations compared with the control animals. EGCG had no significant effects on food or water intake and body weight in mice, suggesting that the glucose-lowering effect was not due to an alteration in these parameters. While EGCG did not modulate insulitis, it elevated the circulating anti-inflammatory cytokine IL-10 level in NOD mice. These findings demonstrate that EGCG may be a novel, plant-derived compound capable of reducing the risk of T1D.
引用
收藏
页码:1218 / 1225
页数:8
相关论文
共 64 条
[1]   Regulation of interleukin-1β-induced chemokine production and matrix metalloproteinase 2 activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts [J].
Ahmed, Salahuddin ;
Pakozdi, Angela ;
Koch, Alisa E. .
ARTHRITIS AND RHEUMATISM, 2006, 54 (08) :2393-2401
[2]   Green tea epigallocatechin-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis [J].
Aktas, O ;
Prozorovski, T ;
Smorodchenko, A ;
Savaskan, NE ;
Lauster, R ;
Kloetzel, PM ;
Infante-Duarte, C ;
Brocke, S ;
Zipp, F .
JOURNAL OF IMMUNOLOGY, 2004, 173 (09) :5794-5800
[3]  
Aldasouqi SA, 2008, ANN SAUDI MED, V28, P411
[4]   Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1 a and elicits cellular responses in the presence and absence of insulin [J].
Anton, Siobhan ;
Melville, Laura ;
Rena, Graham .
CELLULAR SIGNALLING, 2007, 19 (02) :378-383
[5]   NOD mice and autoimmunity [J].
Aoki, CA ;
Borchers, AT ;
Ridgway, WM ;
Keen, CL ;
Ansari, AA ;
Gershwin, ME .
AUTOIMMUNITY REVIEWS, 2005, 4 (06) :373-379
[6]   The chemistry of tea flavonoids [J].
Balentine, DA ;
Wiseman, SA ;
Bouwens, LCM .
CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 1997, 37 (08) :693-704
[7]  
Basu A, 2007, NUTR REV, V65, P361, DOI [10.1301/nr.2007.aug.361-375, 10.1111/j.1753-4887.2007.tb00314.x]
[8]   A novel approach to increase human islet cell mass while preserving β-cell function [J].
Beattie, GM ;
Montgomery, AMP ;
Lopez, AD ;
Hao, E ;
Perez, B ;
Just, ML ;
Lakey, JRT ;
Hart, ME ;
Hayek, A .
DIABETES, 2002, 51 (12) :3435-3439
[9]   IL-1β and IFN-γ induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice [J].
Cardozo, AK ;
Proost, P ;
Gysemans, C ;
Chen, MC ;
Mathieu, C ;
Eizirik, DL .
DIABETOLOGIA, 2003, 46 (02) :255-266
[10]  
Chow HHS, 2003, CLIN CANCER RES, V9, P3312