Calculation of pseudospectra by the Arnoldi iteration

被引:56
作者
Toh, KC [1 ]
Trefethen, LN [1 ]
机构
[1] CORNELL UNIV, DEPT COMP SCI, ITHACA, NY 14853 USA
关键词
Arnoldi; Lanczos; pseudospectra; numerical range; hydrodynamic stability;
D O I
10.1137/0917002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Arnoldi iteration, usually viewed as a method for calculating eigenvalues, can also be used to estimate pseudospectra. This possibility may be of practical importance, because in applications involving highly nonnormal matrices or operators, such as hydrodynamic stability, pseudospectra may be physically more significant than spectra.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 34 条
[2]  
BOBERG L, 1988, Z NATURFORSCH A, V43, P697
[3]   3-DIMENSIONAL OPTIMAL PERTURBATIONS IN VISCOUS SHEAR-FLOW [J].
BUTLER, KM ;
FARRELL, BF .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (08) :1637-1650
[4]   THE DAVIDSON METHOD [J].
CROUZEIX, M ;
PHILIPPE, B ;
SADKANE, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :62-76
[5]   ITERATIVE CALCULATION OF A FEW OF LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE REAL-SYMMETRIC MATRICES [J].
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :87-94
[6]   KRYLOV METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
EDWARDS, WS ;
TUCKERMAN, LS ;
FRIESNER, RA ;
SORENSEN, DC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) :82-102
[7]   QUASI-KERNEL POLYNOMIALS AND THEIR USE IN NON-HERMITIAN MATRIX ITERATIONS [J].
FREUND, RW .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :135-158
[8]  
Golub G, 2013, Matrix Computations, V4th
[9]  
HO D, 1990, NUMER MATH, V56, P721, DOI 10.1007/BF01405199
[10]  
HOCHBRUCK H, UNPUB SIAM J NUMER A