Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein

被引:59
作者
Deka, P
Rajan, PK
Perez-Canadillas, JM
Varani, G [1 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[3] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
关键词
RNA processing; protein dynamics; RNA-binding proteins; nuclear magnetic resonance; RNA recognition;
D O I
10.1016/j.jmb.2005.01.046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The N-terminal domain of the 64 kDa subunit of the cleavage stimulation factor (CstF-64) recognizes GU-rich elements within the 3 '-untranslated region of eukaryotic mRNAs. This interaction is essential for mRNA 3 ' end processing and transcription termination, and its strength affects the efficiency of utilization of different polyadenylation sites. The structure of the RNA-binding N-terminal domain of CstF-64 showed how the N-terminal RNA recognition motif of CstF-64 recognizes GU-rich RNAs. However, it is still perplexing how this protein can bind selectively to RNAs that are rich in G and U residues regardless of their detailed sequence composition, yet discriminate effectively against non-GU-RNAs. We investigated by NMR the dynamics of the CstF-64 RNA-binding domain, both free and bound to two GU-rich RNA sequences that represent polyadenylation regulatory elements. While the free protein displays the motional properties typical of a well-folded protein domain and is uniformly rigid, the protein-RNA interface acquires significant mobility on the micro- to millisecond time-scale once GU-rich RNAs binds to it. These motional features, we propose, are intrinsic to the functional requirement to bind all GU-rich sequences and yet to discriminate against non-GU-rich RNAs. This behavior may be a general mechanism by which some RNA-binding proteins are able to bind to classes of sequences, as opposed to a well-defined sequence or consensus. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:719 / 733
页数:15
相关论文
共 54 条
[1]  
Abragam A., 2002, PRINCIPLES NUCL MAGN
[2]   Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target [J].
Allain, FHT ;
Gilbert, DE ;
Bouvet, P ;
Feigon, J .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 303 (02) :227-241
[3]   Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation [J].
Allain, FHT ;
Gubser, CC ;
Howe, PWA ;
Nagai, K ;
Neuhaus, D ;
Varani, G .
NATURE, 1996, 380 (6575) :646-650
[4]   Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin [J].
Allain, FHT ;
Bouvet, P ;
Dieckmann, T ;
Feigon, J .
EMBO JOURNAL, 2000, 19 (24) :6870-6881
[5]   A Bayesian statistical method for the detection and quantification of rotational diffusion anisotropy from NMR relaxation data [J].
Andrec, M ;
Inman, KG ;
Weber, DJ ;
Levy, RM ;
Montelione, GT .
JOURNAL OF MAGNETIC RESONANCE, 2000, 146 (01) :66-80
[6]   Estimation of dynamic parameters from NMR relaxation data using the Lipari-Szabo model-free approach and Bayesian statistical methods [J].
Andrec, M ;
Montelione, GT ;
Levy, RM .
JOURNAL OF MAGNETIC RESONANCE, 1999, 139 (02) :408-421
[7]   Solution structure of the N-terminal RNP domain of U1A protein: The role of C-terminal residues in structure stability and RNA binding [J].
Avis, JM ;
Allain, FHT ;
Howe, PWA ;
Varani, G ;
Nagai, K ;
Neuhaus, D .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (02) :398-411
[8]   Last but not least: Regulated poly(A) tail formation [J].
Barabino, SML ;
Keller, W .
CELL, 1999, 99 (01) :9-11
[9]   Structure of yeast poly(A) polymerase alone and in complex with 3′-dATP [J].
Bard, J ;
Zhelkovsky, AM ;
Helmling, S ;
Earnest, TN ;
Moore, CL ;
Bohm, A .
SCIENCE, 2000, 289 (5483) :1346-1349
[10]   Patterns of variant polyadenylation signal usage in human genes [J].
Beaudoing, E ;
Freier, S ;
Wyatt, JR ;
Claverie, JM ;
Gautheret, D .
GENOME RESEARCH, 2000, 10 (07) :1001-1010