Movements near the gate of a hyperpolarization-activated cation channel

被引:41
作者
Rothberg, BS [1 ]
Shin, KS [1 ]
Yellen, G [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
关键词
SPIH; gating; Cd2+; cysteine mutagenesis;
D O I
10.1085/jgp.200308928
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Like the related depolarization-activated K+ channels (Kv channels), HCN channels use an intracellular activation gate to regulate access to an inner cavity, lined by the S6 transmembrane regions, which leads to the selectivity filter near the extracellular surface. Here we describe two types of metal interactions with substituted cysteines in the S6, which alter the voltage-controlled movements of the gate. At one position (1,466), substitution of cysteine in all four subunits allows Cd2+ ions at nanomolar concentration to stabilize the open state (a "lock-open" effect). This effect depends on native histidines at a nearby position (H462); the lock-open effect can be abolished by changing the histidines to tyrosines, or enhanced by changing them to cysteines. Unlike a similar effect in Kv channels, this effect depends on a Cd2+ bridge between 462 and 466 in the same subunit. Cysteine substitution at another position (Q468) produces two effects of Cd2+: both a lock-open effect and a dramatic slowing of channel activation-a "lock-closed" effect. The two effects can be separated, because the lock-open effect depends oil the histidine at position 462. The novel lock-closed effect, results from stabilization of the closed state by the binding of tip to four Cd2+ ions. During the opening conformational change, the S6 apparently moves from one position in which the 468C cysteines can bind four Cd2+ ions, possibly as a cluster of cysteines and cadmium ions near the central axis of the pore, to another position (or flexible range of positions) where either 466C or 468C can bind Cd2+ in association with the histidine at 462.
引用
收藏
页码:501 / 510
页数:10
相关论文
共 25 条
[1]   VOLTAGE-CLAMP INVESTIGATIONS OF MEMBRANE CURRENTS UNDERLYING PACE-MAKER ACTIVITY IN RABBIT SINO-ATRIAL NODE [J].
BROWN, H ;
DIFRANCESCO, D .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 308 (NOV) :331-351
[2]   HOW DOES ADRENALINE ACCELERATE THE HEART [J].
BROWN, HF ;
DIFRANCESCO, D ;
NOBLE, SJ .
NATURE, 1979, 280 (5719) :235-236
[3]   Effects of As(III) binding on α-helical structure [J].
Cline, DJ ;
Thorpe, C ;
Schneider, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (10) :2923-2929
[4]   Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel [J].
del Camino, D ;
Yellen, G .
NEURON, 2001, 32 (04) :649-656
[5]   Blocker protection in the pore of a voltage-gated K+ channel and its structural implications [J].
del Camino, D ;
Holmgren, M ;
Liu, Y ;
Yellen, G .
NATURE, 2000, 403 (6767) :321-325
[6]  
DIFRANCESCO D, 1993, ANNU REV PHYSIOL, V55, P455, DOI 10.1146/annurev.physiol.55.1.455
[7]   DIRECT ACTIVATION OF CARDIAC-PACEMAKER CHANNELS BY INTRACELLULAR CYCLIC-AMP [J].
DIFRANCESCO, D ;
TORTORA, P .
NATURE, 1991, 351 (6322) :145-147
[8]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[9]   CRYSTAL-STRUCTURE OF CD,ZN METALLOTHIONEIN [J].
FUREY, WF ;
ROBBINS, AH ;
CLANCY, LL ;
WINGE, DR ;
WANG, BC ;
STOUT, CD .
SCIENCE, 1986, 231 (4739) :704-710
[10]   Molecular identification of a hyperpolarization-activated channel in sea urchin sperm [J].
Gauss, R ;
Seifert, R ;
Kaupp, UB .
NATURE, 1998, 393 (6685) :583-587