Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density electroencephalogram

被引:28
作者
Wingeier, BM
Nunez, PL
Silberstein, RB
机构
[1] Swinburne Univ Technol, Brain Sci Inst, Hawthorn, Vic 3122, Australia
[2] Tulane Univ, Boggs Ctr, Dept Biomed Engn, New Orleans, LA 70118 USA
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 05期
关键词
D O I
10.1103/PhysRevE.64.051916
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate an application of spherical harmonic decomposition to the analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to the analysis of hemispherical, irregularly san-pled data. Spatial sampling requirements and performance of the methods are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wave-number relationship in some bands.
引用
收藏
页码:9 / 051916
页数:9
相关论文
共 26 条
[1]  
[Anonymous], [No title captured]
[2]  
Bendat J. S., 1986, RANDOM DATA
[3]  
BOAS M, 1983, MATH METHODS PHYSICA, P568
[4]  
Cadusch PJ, 1992, BRAIN TOPOGR, V5, P59
[5]   MAGNETIC-FIELDS OF A DIPOLE IN SPECIAL VOLUME CONDUCTOR SHAPES [J].
CUFFIN, BN ;
COHEN, D .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1977, 24 (04) :372-381
[6]  
DASILVA FHL, 1995, NEOCORTICAL DYNAMICS
[7]   THE POTENTIAL DISTRIBUTION IN A LAYERED ANISOTROPIC SPHEROIDAL VOLUME CONDUCTOR [J].
DEMUNCK, JC .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (02) :464-470
[8]  
Edgington E. S., 1987, RANDOMIZATION TESTS
[9]   STATISTICAL-MECHANICS OF NEOCORTICAL INTERACTIONS .1. BASIC FORMULATION [J].
INGBER, L .
PHYSICA D-NONLINEAR PHENOMENA, 1982, 5 (01) :83-107
[10]  
INGBER L, 1995, NEOCORTICAL DYNAMICS