Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311

被引:290
作者
Cerf, NJ [1 ]
Lévy, M
Van Assche, G
机构
[1] Free Univ Brussels, Ecole Polytech, CP 165, B-1050 Brussels, Belgium
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1103/PhysRevA.63.052311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A continuous key-distribution scheme is proposed that relies on a pair of conjugate quautum variables. It allows two remote Parties to share a secret Gaussian key try encoding it into one of the two quadrature components of a single-mode electromagnetic field. The resulting quantum cryptographic information versus disturbance trade-off is investigated for an individual attack based on the optimal continuous cloning machine. It is shown that the information gained by the eavesdropper then simply equals the information lost by the receiver.
引用
收藏
页码:523111 / 523115
页数:5
相关论文
共 24 条
[1]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[2]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[5]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[6]   Cloning of continuous quantum variables [J].
Cerf, NJ ;
Ipe, A ;
Rottenberg, X .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1754-1757
[7]   Optimal N-to-M cloning of conjugate quantum variables -: art. no. 040301 [J].
Cerf, NJ ;
Iblisdir, S .
PHYSICAL REVIEW A, 2000, 62 (04) :3
[8]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]   Optimal eavesdropping in quantum cryptography .1. Information bound and optimal strategy [J].
Fuchs, CA ;
Gisin, N ;
Griffiths, RB ;
Niu, CS ;
Peres, A .
PHYSICAL REVIEW A, 1997, 56 (02) :1163-1172