Bragg solitons and optical switching in nonlinear periodic structures: An historical perspective

被引:7
作者
Brown, TG [1 ]
Eggleton, BJ
机构
[1] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[2] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
来源
OPTICS EXPRESS | 1998年 / 3卷 / 11期
关键词
D O I
10.1364/OE.3.000385
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A brief historical narrative of the study of Bragg solitons and optical switching in nonlinear periodic structures is presented, beginning with the first theoretical predictions in the late 1970's up to and including several recent experimental demonstrations of optical switching and nonlinear pulse propagation in these structures. (C) 1998 Optical Society of America.
引用
收藏
页码:385 / 388
页数:4
相关论文
共 31 条
[1]   SELF-INDUCED TRANSPARENCY SOLITONS IN NONLINEAR REFRACTIVE PERIODIC MEDIA [J].
ACEVES, AB ;
WABNITZ, S .
PHYSICS LETTERS A, 1989, 141 (1-2) :37-42
[2]   STORAGE AND STEERING OF SELF-TRAPPED DISCRETE SOLITONS IN NONLINEAR WAVE-GUIDE ARRAYS [J].
ACEVES, AB ;
DEANGELIS, C ;
TRILLO, S ;
WABNITZ, S .
OPTICS LETTERS, 1994, 19 (05) :332-334
[3]   OPTICAL SWITCHING IN A METAL-SEMICONDUCTOR-METAL WAVE-GUIDE STRUCTURE [J].
BIEBER, AE ;
PRELEWITZ, DF ;
BROWN, TG ;
TIBERIO, RC .
APPLIED PHYSICS LETTERS, 1995, 66 (25) :3401-3403
[4]  
BIEBER AE, 1995, APPL PHYS LETT, V71, P861
[5]   Experimental observation of nonlinear pulse compression in nonuniform Bragg gratings [J].
Broderick, NGR ;
Taverner, D ;
Richardson, DJ ;
Ibsen, M ;
Laming, RI .
OPTICS LETTERS, 1997, 22 (24) :1837-1839
[6]   COUPLED-MODE EQUATIONS WITH FREE-CARRIER EFFECTS - A NUMERICAL-SOLUTION [J].
BRODERICK, NGR ;
DESTERKE, CM ;
JACKSON, KR .
OPTICAL AND QUANTUM ELECTRONICS, 1994, 26 (03) :S219-S234
[7]   GAP SOLITONS AND THE NONLINEAR OPTICAL-RESPONSE OF SUPERLATTICES [J].
CHEN, W ;
MILLS, DL .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :160-163
[8]   SLOW BRAGG SOLITONS IN NONLINEAR PERIODIC STRUCTURES [J].
CHRISTODOULIDES, DN ;
JOSEPH, RI .
PHYSICAL REVIEW LETTERS, 1989, 62 (15) :1746-1749
[9]   NONLINEAR COUPLED-MODE EQUATIONS ON A FINITE INTERVAL - A NUMERICAL PROCEDURE [J].
DESTERKE, CM ;
JACKSON, KR ;
ROBERT, BD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (02) :403-412
[10]   EXTENSIONS AND GENERALIZATIONS OF AN ENVELOPE-FUNCTION APPROACH FOR THE ELECTRODYNAMICS OF NONLINEAR PERIODIC STRUCTURES [J].
DESTERKE, CM ;
SIPE, JE .
PHYSICAL REVIEW A, 1989, 39 (10) :5163-5178