Hidden Markov models for online classification of single trial EEG data

被引:140
作者
Obermaier, B [1 ]
Guger, C
Neuper, C
Pfurtscheller, G
机构
[1] Graz Univ Technol, Inst Biomed Engn, Dept Med Informat, A-8010 Graz, Austria
[2] Graz Univ Technol, Ludwig Boltzmann Inst Med Informat & Neuroinforma, A-8010 Graz, Austria
[3] Inst Super Tecn, ISR, LaSEEB, Lisbon, Portugal
基金
奥地利科学基金会;
关键词
brain-computer interface (BCI); hidden Markov models; EEG classification; event-related desynchronisation (ERD);
D O I
10.1016/S0167-8655(01)00075-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hidden Markov models (HMMs) are presented for the online classification of single trial EEG data during imagination of a left or right hand movement. The classification shows an improvement of the online experiment and the temporal determination of minimal classification error compared to linear classification methods. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1299 / 1309
页数:11
相关论文
共 27 条
[1]   Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks [J].
Anderson, CW ;
Stolz, EA ;
Shamsunder, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (03) :277-286
[2]  
Bhattacharyya A., 1943, B CALCUTTA MATH SOC, V35, P99, DOI DOI 10.1038/157869B0
[3]   A spelling device for the paralysed [J].
Birbaumer, N ;
Ghanayim, N ;
Hinterberger, T ;
Iversen, I ;
Kotchoubey, B ;
Kübler, A ;
Perelmouter, J ;
Taub, E ;
Flor, H .
NATURE, 1999, 398 (6725) :297-298
[4]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[5]  
Deller Jr J. R., 1993, DISCRETE TIME PROCES
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[8]   Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) [J].
Guger, C ;
Ramoser, H ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (04) :447-456
[9]  
GUGER C, 2000, IEEE T REHABIL ENG, P49
[10]   Using time-dependent neural networks for EEG classification [J].
Haselsteiner, E ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (04) :457-463