Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction

被引:1497
作者
Masci, Jonathan [1 ]
Meier, Ueli [1 ]
Ciresan, Dan [1 ]
Schmidhuber, Juergen [1 ]
机构
[1] IDSIA, Lugano, Switzerland
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I | 2011年 / 6791卷
关键词
convolutional neural network; auto-encoder; unsupervised learning; classification;
D O I
10.1007/978-3-642-21735-7_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel convolutional auto-encoder (CAE) for unsupervised feature learning. A stack of CAEs forms a convolutional neural network (CNN). Each CAE is trained using conventional on-line gradient descent without additional regularization terms. A max-pooling layer is essential to learn biologically plausible features consistent with those found by previous approaches. Initializing a CNN with filters of a trained CAE stack yields superior performance on a digit (MNIST) and an object recognition (CIFAR10) benchmark.
引用
收藏
页码:52 / 59
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2007, NEURIPS
[2]  
[Anonymous], NEURAL INFORM PROCES
[3]  
[Anonymous], 2007, P COMP VIS PATT REC
[4]  
[Anonymous], 2007, P COMP VIS PATT REC
[5]  
[Anonymous], 2006, NEURAL COMPUTATION
[6]  
[Anonymous], 2009, P 26 ANN INT C MACHI, DOI DOI 10.1145/1553374.1553453
[7]  
[Anonymous], P COMP VIS PATT REC
[8]  
[Anonymous], 2010, P INT C ART NEUR NET
[9]  
Behnke S, 2003, LECT NOTES COMPUT SC, V2766, P1
[10]  
Ciresan D. C., 2011, INT JOINT C IN PRESS