Boron nitride substrates for high-quality graphene electronics

被引:5851
作者
Dean, C. R. [1 ,2 ]
Young, A. F. [3 ]
Meric, I. [1 ]
Lee, C. [4 ,5 ]
Wang, L. [2 ]
Sorgenfrei, S. [1 ]
Watanabe, K. [6 ]
Taniguchi, T. [6 ]
Kim, P. [3 ]
Shepard, K. L. [1 ]
Hone, J. [2 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
[4] Sungkyunkwan Univ, SKUU Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea
[5] Sungkyunkwan Univ, Dept Mech Engn, Suwon 440746, South Korea
[6] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
基金
美国国家科学基金会;
关键词
BANDGAP;
D O I
10.1038/nnano.2010.172
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene devices on standard SiO2 substrates are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene(1-12). Although suspending the graphene above the substrate leads to a substantial improvement in device quality(13,14), this geometry imposes severe limitations on device architecture and functionality. There is a growing need, therefore, to identify dielectrics that allow a substrate-supported geometry while retaining the quality achieved with a suspended sample. Hexagonal boron nitride (h-BN) is an appealing substrate, because it has an atomically smooth surface that is relatively free of dangling bonds and charge traps. It also has a lattice constant similar to that of graphite, and has large optical phonon modes and a large electrical bandgap. Here we report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal h-BN substrates, by using a mechanical transfer process. Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO2. These devices also show reduced roughness, intrinsic doping and chemical reactivity. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics(15) and allows for the realization of more complex graphene heterostructures.
引用
收藏
页码:722 / 726
页数:5
相关论文
共 34 条
[1]  
ADAM S, 2007, PHYS REV B, V77, P5436
[2]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[5]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[8]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[9]   Broken-symmetry states and divergent resistance in suspended bilayer graphene [J].
Feldman, Benjamin E. ;
Martin, Jens ;
Yacoby, Amir .
NATURE PHYSICS, 2009, 5 (12) :889-893
[10]   Substrate-limited electron dynamics in graphene [J].
Fratini, S. ;
Guinea, F. .
PHYSICAL REVIEW B, 2008, 77 (19)