TgPrx2 represents a recently discovered cytosolic 1-Cys peroxiredoxin (Prx) from the intracellular parasite Toxoplasma gondii. Overexpression of the respective gene confers protection against H2O2, suggesting that the protein possesses peroxidase activity. According to the current nomenclature eukaryotic typical and atypical 2-Cys Prx contain a second conserved resolving cysteine residue whereas 1-Cys Prx work on the basis of a monothiol mechanism. Only a few 1-Cys peroxiredoxins have been biochemically characterized to date. Here we describe the mechanistic characterization of TgPrx2 in vitro, including site directed mutagenesis studies, gel filtration chromatography, and molecular modeling. TgPrx2 has general antioxidant properties as indicated by its ability to protect glutamine synthetase against a dithiothreitol Fe3+-catalyzed oxidation system. However, TgPrx2 does not reduce H2O2 nor tert-butyl hydroperoxide at the expense of glutaredoxin, thioredoxin or glutathione. Cys(47) was identified as the active site cysteine residue. Most interestingly, Cys(47) was found to form an intermolecular disulfide with Cys(209) from the C-terminal domain of a second subunit which acts as the resolving cysteine. This is a mechanism analogous to typical peroxiredoxins. In contrast to the latter, however, dimeric TgPrx2 does not oligomerize to decamers but is able to form tetramers and hexamers which are non-covalently associated. To our knowledge, TgPrx2 is the first eukaryotic 'so called' 1-Cys peroxiredoxin shown to act on the basis of a 2-Cys mechanism. Our data indicate that mechanistic studies are essential for classifying peroxiredoxins. (C) 2004 Elsevier B.V. All rights reserved.