Multiple forms of redox activity in populations of human spermatozoa

被引:78
作者
Aitken, RJ
Ryan, AL
Curry, BJ
Baker, MA
机构
[1] Univ Newcastle, Sch Environm & Life Sci, Discipline Biol Sci, Fac Sci & Informat Technol, Callaghan, NSW 2308, Australia
[2] Univ Newcastle, ARC Ctr Excellence Biotechnol & Dev, Callaghan, NSW 2308, Australia
关键词
human spermatozoa; lucigenin; luminol; Percoll fractionation; redox activity;
D O I
10.1093/molehr/gag086
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study we have examined the biochemical attributes of the redox systems that regulate human sperm function using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium, monosodium salt (WST-1), lucigenin and luminol-peroxidase as probes. WST-1 was readily reduced by human spermatozoa in the presence of an intermediate electron acceptor (IEA) or NAD(P)H. The IEA-mediated activity resembled a previously described trans-membrane NADH oxidase in being inhibited by capsaicin, superoxide dismutase (SOD) and N-ethyl maleimide, but differed in its sensitivity to p-chloromercuriphenylsulphonic acid (pCMBS). The NAD(P)H-induced WST-1 reduction resembled the superficial oxidase described previously, in its sensitivity to pCMBS, but differed in its suppression by capsaicin. Lucigenin was reduced by human spermatozoa in a manner that could be inhibited by SOD and stimulated by NAD(P)H or 12-myristate, 13-acetate phorbol ester. A23187 also stimulated human spermatozoa via a diphenylene iodonium-sensitive pathway detectable with luminol-peroxidase but not lucigenin. Defective sperm populations recovered from the low-density region of Percoll gradients were characterized by high levels of redox activity that was only discernable with lucigenin. We conclude that human spermatozoa possess multiple plasma membrane redox systems that are involved to varying extents in the physiological control and pathological disruption of sperm function. Their distinct pharmacological profiles should significantly assist attempts to resolve and characterize these systems.
引用
收藏
页码:645 / 661
页数:17
相关论文
共 68 条
[1]   REACTIVE OXYGEN SPECIES GENERATION AND HUMAN SPERMATOZOA - THE BALANCE OF BENEFIT AND RISK [J].
AITKEN, J ;
FISHER, H .
BIOESSAYS, 1994, 16 (04) :259-267
[2]  
Aitken RJ, 1998, J CELL SCI, V111, P645
[3]   Oxidative stress, DNA damage and the Y chromosome [J].
Aitken, RJ ;
Krausz, C .
REPRODUCTION, 2001, 122 (04) :497-506
[4]  
AITKEN RJ, 1992, J REPROD FERTIL, V94, P451
[5]  
Aitken RJ, 1997, MOL REPROD DEV, V47, P468, DOI 10.1002/(SICI)1098-2795(199708)47:4<468::AID-MRD14>3.0.CO
[6]  
2-S
[7]  
AITKEN RJ, 1995, J CELL SCI, V108, P2017
[8]   The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation [J].
Aitken, RJ ;
Buckingham, DW ;
Harkiss, D ;
Paterson, M ;
Fisher, H ;
Irvine, DS .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 1996, 117 (01) :83-93
[9]  
AITKEN RJ, 1993, J REPROD FERTIL, V97, P441
[10]   Reactive oxygen species generation by human spermatozoa: a continuing enigma [J].
Aitken, RJ ;
Baker, MA .
INTERNATIONAL JOURNAL OF ANDROLOGY, 2002, 25 (04) :191-194