Important role of tetrahydrobiopterin in NO complex formation and interdomain electron transfer in neuronal nitric-oxide synthase

被引:12
作者
Noguchi, T
Sagami, I
Daff, S
Shimizu, T
机构
[1] Tohoku Univ, Inst Chem React Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
[2] Univ Edinburgh, Dept Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
关键词
nitric-oxide synthase; tetrahydrobiopterine; electron transfer; site-directed mutagenesis; NADPH oxidation; heme reduction;
D O I
10.1006/bbrc.2001.4697
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neuronal nitric-oside synthase (nNOS) is composed of a heme oxygenase domain and a flavin-bound reductase domain. Ca2+/calmodulin (CaM) is essential for interdomain electron transfer during catalysis, whereas the role of the catalytically important cofactor, tetrahydrobiopterin (H4B) remains elusive, The product NO appears to bind to the heme and works as a feedback: inhibitor, The present study shows that the Fe3+-NO complex is reduced to the Fe2+-NO complex by NADPH in the presence of both L-Arg and H4B even in the absence of Ca2+/CaM. The complex could not be fully reduced in the absence of H4B under any circumstances. However, dihydrobioptepin and N-G-hydroxy-L-ARG, respectively could be substituted for H4B and L-Arg, respectively, No direct correlation could be found between redox potentials of the nNOS heme and the observed reduction of the Fe3+-NO complex, Thus, sur data indicate the importance of the pterin binding to the active site structure during the reduction of the NO-heme complex by NADPH during catalytic turnover. (C) 2001 Academic Press.
引用
收藏
页码:1092 / 1097
页数:6
相关论文
共 42 条
[1]   Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase [J].
Abu-Soud, HM ;
Wu, CQ ;
Ghosh, DK ;
Stuehr, DJ .
BIOCHEMISTRY, 1998, 37 (11) :3777-3786
[2]   Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase [J].
Abu-Soud, HM ;
Ichimori, K ;
Presta, A ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17349-17357
[3]   Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase - Implications for mechanism [J].
Adak, S ;
Wang, Q ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (43) :33554-33561
[4]   Molecular basis for hyperactivity in tryptophan 409 mutants of neuronal NO synthase [J].
Adak, S ;
Wang, Q ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17434-17439
[5]   The role of tetrahydrobiopterin in the activation of oxygen by nitric-oxide synthase [J].
Bec, N ;
Gorren, AFC ;
Mayer, B ;
Schmidt, PP ;
Andersson, KK ;
Lange, R .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2000, 81 (03) :207-211
[6]   Reaction of neuronal nitric-oxide synthase with oxygen at low temperature - Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin [J].
Bec, N ;
Gorren, ACF ;
Voelker, C ;
Mayer, B ;
Lange, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (22) :13502-13508
[7]   Formation and reactions of the heme-dioxygen intermediate in the first and second steps of nitric oxide synthesis as studied by stopped-flow spectroscopy under single-turnover conditions [J].
Boggs, S ;
Huang, LX ;
Stuehr, DJ .
BIOCHEMISTRY, 2000, 39 (09) :2332-2339
[8]   Structures of the Nω-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins [J].
Crane, BR ;
Arvai, AS ;
Ghosh, S ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
BIOCHEMISTRY, 2000, 39 (16) :4608-4621
[9]   Structure of nitric oxide synthase oxygenase dimer with pterin and substrate [J].
Crane, BR ;
Arvai, AS ;
Ghosh, DK ;
Wu, CQ ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1998, 279 (5359) :2121-2126
[10]   The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca2+/calmodulin-dependent electron transfer [J].
Daff, S ;
Sagami, I ;
Shimizu, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30589-30595