A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California

被引:2904
作者
Waldhauser, F [1 ]
Ellsworth, WL [1 ]
机构
[1] US Geol Survey, Menlo Park, CA 94025 USA
关键词
D O I
10.1785/0120000006
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We have developed an efficient method to determine high-resolution hypocenter locations over large distances. The location method incorporates ordinary absolute travel-time measurements and/or cross-correlation P-and S-wave differential travel-time measurements. Residuals between observed and theoretical travel-time differences (or double-differences) are minimized for pairs of earthquakes at each station while linking together all observed event-station pairs. A least-squares solution is found by iteratively adjusting the vector difference between hypocentral pairs. The double-difference algorithm minimizes errors due to unmodeled velocity structure without the use of station corrections. Because catalog and cross-correlation data are combined into one system of equations, interevent distances within multiplets are determined to the accuracy of the cross-correlation data, while the relative locations between multiplets and uncorrelated events are simultaneously determined to the accuracy of the absolute travel-time data. Statistical resampling methods are used to estimate data accuracy and location errors. Uncertainties in double-difference locations are improved by more than an order of magnitude compared to catalog locations. The algorithm is tested, and its performance is demonstrated on two clusters of earthquakes located on the northern Hayward fault, California. There it collapses the diffuse catalog locations into sharp images of seismicity and reveals horizontal lineations of hypocenters that define the narrow regions on the fault where stress is released by brittle failure.
引用
收藏
页码:1353 / 1368
页数:16
相关论文
共 40 条
[1]  
Aki K., 1980, Quantitative seismology: Theory and methods, V842
[2]   ROBUST EARTHQUAKE LOCATION USING M-ESTIMATES [J].
ANDERSON, KR .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1982, 30 (2-3) :119-130
[3]  
[Anonymous], 1982, JACKNIFE BOOTSTRAP O
[4]  
[Anonymous], 1977, DATA ANAL LINEAR REG
[5]   SIMULATED ANNEALING FOR EARTHQUAKE LOCATION [J].
BILLINGS, SD .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1994, 118 (03) :680-692
[6]   ON THE ROBUST ESTIMATION OF POWER SPECTRA, COHERENCES, AND TRANSFER-FUNCTIONS [J].
CHAVE, AD ;
THOMSON, DJ ;
ANDER, ME .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B1) :633-648
[7]   CRUSTAL STRUCTURE MODELING OF EARTHQUAKE DATA .1. SIMULTANEOUS LEAST-SQUARES ESTIMATION OF HYPOCENTER AND VELOCITY PARAMETERS [J].
CROSSON, RS .
JOURNAL OF GEOPHYSICAL RESEARCH, 1976, 81 (17) :3036-3046
[8]   RUPTURE GEOMETRY FROM HIGH-PRECISION RELATIVE HYPOCENTER LOCATIONS OF MICROEARTHQUAKE CLUSTERS [J].
DEICHMANN, N ;
GARCIAFERNANDEZ, M .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1992, 110 (03) :501-517
[9]   FORESHOCK SEQUENCE OF THE 1992 LANDERS, CALIFORNIA, EARTHQUAKE AND ITS IMPLICATIONS FOR EARTHQUAKE NUCLEATION [J].
DODGE, DA ;
BEROZA, GC ;
ELLSWORTH, WL .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B6) :9865-9880
[10]   JOINT EPICENTRE DETERMINATION [J].
DOUGLAS, A .
NATURE, 1967, 215 (5096) :47-&