Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism

被引:184
作者
Havasi, Andrea [1 ]
Li, Zhijian [2 ]
Wang, Zhiyong [1 ]
Martin, Jody L. [3 ]
Botla, Venugopal [1 ]
Ruchalski, Kathleen [1 ]
Schwartz, John H. [1 ]
Borkan, Steven C. [1 ]
机构
[1] Boston Med Ctr, Boston, MA 02118 USA
[2] Zhongshan Univ, Affiliated Hosp 1, Guangzhou 510080, Peoples R China
[3] Loyola Univ, Cardiovasc Inst, Maywood, IL 60153 USA
关键词
D O I
10.1074/jbc.M801291200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by > 50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up-or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.
引用
收藏
页码:12305 / 12313
页数:9
相关论文
共 50 条
[1]  
Aberle H, 1996, J CELL BIOCHEM, V61, P514, DOI 10.1002/(SICI)1097-4644(19960616)61:4<514::AID-JCB4>3.3.CO
[2]  
2-D
[3]   Bax interacts with the voltage-dependent anion channel and mediates ethanolinduced apoptosis in rat hepatocytes [J].
Adachi, M ;
Higuchi, H ;
Miura, S ;
Azuma, T ;
Inokuchi, S ;
Saito, H ;
Kato, S ;
Ishii, H .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2004, 287 (03) :G695-G705
[4]   The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death [J].
Akbar, MT ;
Lundberg, AMC ;
Liu, K ;
Vidyadaran, S ;
Wells, KE ;
Dolatshad, H ;
Wynn, S ;
Wells, DJ ;
Latchman, DS ;
de Belleroche, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :19956-19965
[5]   Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival [J].
Benn, SC ;
Perrelet, D ;
Kato, AC ;
Scholz, J ;
Decosterd, I ;
Mannion, RJ ;
Bakowska, JC ;
Woolf, CJ .
NEURON, 2002, 36 (01) :45-56
[6]   A mitochondrial perspective on cell death [J].
Bernardi, P ;
Petronilli, V ;
Di Lisa, F ;
Forte, M .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (02) :112-117
[7]   HEAT-STRESS PROTEIN-ASSOCIATED CYTOPROTECTION OF INNER MEDULLARY COLLECTING DUCT CELLS FROM RAT-KIDNEY [J].
BORKAN, SC ;
EMAMI, A ;
SCHWARTZ, JH .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (03) :F333-F341
[8]   Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress [J].
Brar, BK ;
Stephanou, A ;
Wagstaff, MJD ;
Coffin, RS ;
Marber, MS ;
Engelmann, G ;
Latchman, DS .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1999, 31 (01) :135-146
[9]   Hsp27 negatively regulates cell death by interacting with cytochrome c [J].
Bruey, JM ;
Ducasse, C ;
Bonniaud, P ;
Ravagnan, L ;
Susin, SA ;
Diaz-Latoud, C ;
Gurbuxani, S ;
Arrigo, AP ;
Kroemer, G ;
Solary, E ;
Garrido, C .
NATURE CELL BIOLOGY, 2000, 2 (09) :645-652
[10]   Selective degradation of E-cadherin and dissolution of E-cadherin-catenin complexes in epithelial ischemia [J].
Bush, KT ;
Tsukamoto, T ;
Nigam, SK .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2000, 278 (05) :F847-F852