Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin

被引:19
作者
Standfuss, Joerg [2 ]
Zaitseva, Eksteruns [1 ]
Mahalingam, Mohana [1 ]
Vogel, Reuner [1 ]
机构
[1] Univ Freiburg, Arbeitsgrp Biophys, Inst Mol Med & Zellforsch, D-79104 Freiburg, Germany
[2] MRC, Mol Biol Lab, Struct Studies Div, Cambridge CB2 0QH, England
基金
英国医学研究理事会;
关键词
infrared spectroscopy; membrane protein; visual pigment; G protein-coupled receptor; signal transduction;
D O I
10.1016/j.jmb.2008.04.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Disruption of an interhelical salt bridge between the retinal protonated Schiff base linked to H7 and Glu113 on H3 is one of the decisive steps during activation of rhodopsin. Using previously established stabilization strategies, we engineered a stabilized E113Q counterion mutant that converted rhodopsin to a UV-absorbing photoreceptor with deprotonated Schiff base and allowed reconstitution into native-like lipid membranes. Fourier-transform infrared difference spectroscopy reveals a deprotonated Schiff base in the photoproducts of the mutant up to the active state Meta II, the absence of the classical pH-dependent Meta I/Meta II conformational equilibrium in favor of Meta II, and an anticipation of active state features under conditions that stabilize inactive photoproduct states in wildtype rhodopsin. Glu181 on extracellular loop 2, is found to be unable to maintain a counterion function to the Schiff base on the activation pathway of rhodopsin in the absence of the primary counterion, Glu113. The Schiff base becomes protonated in the transition to Meta III. This protonation is, however, not associated with a deactivation of the receptor, in contrast to wildtype rhodopsin. Glu181 is suggested to be the counterion in the Meta III state of the mutant and appears to be capable of stabilizing a protonated Schiff base in Meta 111, but not of constraining the receptor in an inactive conformation. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 53 条
[1]  
AMIS S, 1994, J BIOL CHEM, V269, P23879
[2]  
AU FW, 2007, J MOL BIOL, V372, P906
[3]   The conformational change responsible for AT(1) receptor activation is dependent upon two juxtaposed asparagine residues on transmembrane helices III and VII [J].
Balmforth, AJ ;
Lee, AJ ;
Warburton, P ;
Donnelly, D ;
Ball, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (07) :4245-4251
[4]   Structural and functional properties of metarhodopsin III: Recent spectroscopic studies on deactivation pathways of rhodopsin [J].
Bartl, Franz J. ;
Vogel, Reiner .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (14) :1648-1658
[5]   Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II [J].
Beck, M ;
Siebert, F ;
Sakmar, TP .
FEBS LETTERS, 1998, 436 (03) :304-308
[6]   Spectroscopic evidence for interaction between transmembrane helices 3 and 5 in rhodopsin [J].
Beck, M ;
Sakmar, TP ;
Siebert, F .
BIOCHEMISTRY, 1998, 37 (20) :7630-7639
[7]   Constitutive activation of the δ opioid receptor by mutations in transmembrane domains III and VII [J].
Befort, K ;
Zilliox, C ;
Filliol, D ;
Yue, SY ;
Kieffer, BL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18574-18581
[8]   Location of Trp265 in metarhodopsin II: Implications for the activation mechanism of the visual receptor rhodopsin [J].
Crocker, E ;
Eilers, M ;
Ahuja, S ;
Hornak, V ;
Hirshfeld, A ;
Sheves, M ;
Smith, SO .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 357 (01) :163-172
[9]  
DEGRIP WJ, 1982, METHOD ENZYMOL, V81, P197
[10]   Phototransduction by vertebrate ultraviolet visual pigments: Protonation of the retinylidene Schiff base following photobleaching [J].
Dukkipati, A ;
Kusnetzow, A ;
Babu, KR ;
Ramos, L ;
Singh, D ;
Knox, BE ;
Birge, RR .
BIOCHEMISTRY, 2002, 41 (31) :9842-9851