This paper describes the tests of accuracy and the first application of a combined planar visualization technique. Its goal is two-phase flow discrimination, i.e. simultaneous measurements of velocity of droplets and ambient gas in the case of two-phase flow mixing, at the same location and with possible conditioning by "apparent diameter" (AD) of the droplets. It combines the mature techniques of particle image velocimetry (PIV), planar Mie scattering diffusion (PMSD), planar laser-induced fluorescence (PLIF), and it necessitates two synchronized cross-correlation systems, digital image treatment and analysis. This technique was developed with the objective of batter describing the mixing between liquid and gaseous phases as in the case of high-pressure spray atomization in quiescent ambient gas. The basic principle of separation is to seed the ambient gas with micrometer particles and to tag the liquid with fluorescent dye. We use digital image treatment and analysis to discriminate between the phases. We use two cross-correlation PIV systems in order to obtain the velocity field of the droplets and gas simultaneously and separately at the same location. The digital image processing for separating the phases involves geometric measurement of droplet shapes. This leads to measurement of droplet parameters close to their real diameter, which could be used for analysis of actual mixing. A synchronized system composed of two CCD cameras is used for image recording, and two Nd:YAG lasers are used for generating pulsed light sheets at times t and t + deltat. Tests were performed to check for different sources of errors. The combined technique was applied to measurements in high-pressure spray flow atomizing in a quiescent ambient gas, and first results are presented.