Bioleaching model of a copper-sulfide ore bed in heap and dump configurations

被引:48
作者
Casas, JM
Martinez, J
Moreno, L
Vargas, T
机构
[1] Univ Chile, Dept Ingn Quim, Santiago, Chile
[2] Royal Inst Technol, Dept Chem Engn & Technol, S-10044 Stockholm, Sweden
来源
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE | 1998年 / 29卷 / 04期
关键词
D O I
10.1007/s11663-998-0149-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A two-dimensional (2-D) model for a heap or dump bioleaching of a copper ore containing mainly chalcocite and pyrite has been developed. The rate of the mineral sulfide dissolution was related to the rate of oxidation by bacteria attached onto the ore surface. The latter was calculated using the model of Michaelis-Menten, where both temperature and dissolved oxygen in the leach solution were taken into account by the kinetic equation. Oxygen transport through the ore bed was associated with natural air convection originating from the decrease in gas density inside the ore bed, which was attributable not only to heating, but also to humidification and decrease in the oxygen concentration. The model was used to estimate air-velocity fields and profiles of temperature and oxygen concentrations as well as mineral conversions during the bioleaching operation for ore beds with different pyrite contents, bacterial populations, widths, heights, and permeabilities. The model provides a useful tool for the design, improvement, and optimization of industrial operating conditions.
引用
收藏
页码:899 / 909
页数:11
相关论文
共 33 条
[1]  
AGUIRRE R, 1991, BIOLEACHING MOL BIOL, P107
[2]  
AHONEN L, 1989, APPL ENVIRON MICROB, V55, P3905
[3]  
BAILEY JE, 1986, BIOCH ENG FUNDAMENTA, P447
[4]  
Bartlett R.W., 1992, SOLUTION MINING LEAC
[5]   SIMULATION OF ORE HEAP LEACHING USING DETERMINISTIC MODELS [J].
BARTLETT, RW .
HYDROMETALLURGY, 1992, 29 (1-3) :231-260
[6]  
BHAPPU RB, 1969, T SOC MIN ENG, V244, P307
[7]  
BRADLEY P, 1992, METALL T B, V23, P537
[8]  
BUSTOS S, 1993, FEMS MICROBIOL REV, V11, P231, DOI 10.1016/0168-6445(93)90046-C
[9]   NATURAL RELEASE OF COPPER AND ZINC INTO THE AQUATIC ENVIRONMENT [J].
BYERLEY, JJ ;
SCHARER, JM .
HYDROMETALLURGY, 1992, 30 (1-3) :107-126
[10]  
Casas J. M., 1993, BIOHYDROMETALLURGICA, VI, P249