Himalayan metamorphic CO2 fluxes:: Quantitative constraints from hydrothermal springs

被引:129
作者
Becker, John A. [1 ]
Bickle, Mike J. [1 ]
Galy, Albert [1 ]
Holland, Tim J. B. [1 ]
机构
[1] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
关键词
Himalaya; CO2; metamorphism; carbon cycle; hot springs; climate; isotopes;
D O I
10.1016/j.epsl.2007.10.046
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hot springs in the Marsyandi Valley, Nepal, vent CO2 sourced from metamorphic fluids that mix with shallow groundwaters before degassing near the Earth's surface. The delta C-13 of spring waters ranges up to +13 parts per thousand, while that of the coexisting free gas phase is close to -4 parts per thousand. Empirical and thermodynamic modelling of this isotopic fractionation suggests >97 +/- 1% CO2 degassing. The calculated minimum total CO2 degassing in the Marsyandi catchment is 5.4 x 10(9) mol/yr from a Cl(-)based estimate of the spring water discharge to the Marsyandi River and the fraction of CO2 degassed. Extrapolated to the whole of the Himalayas, this implies a probable minimum metamorphic CO2 flux of 0-9 x 10(12) mol/yr, or similar to 13% of solid Earth CO2 degassing. The calculated flux is a factor of three greater than the estimated CO2 drawdown by silicate weathering in the Himalayas. Himalayan metamorphic degassing contributes a significant fraction of the global solid Earth CO2 flux and implies that metamorphism may cause changes in long-term climate that oppose those resulting from the orogenic forcing of chemical weatherability. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:616 / 629
页数:14
相关论文
共 46 条
[1]   Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities [J].
Allen, DE ;
Strazisar, BR ;
Soong, Y ;
Hedges, SW .
FUEL PROCESSING TECHNOLOGY, 2005, 86 (14-15) :1569-1580
[2]  
Anderson G.M., 1993, Thermodynamics in Geochemistry: The Equilibrium Model
[3]   THE DENSITY MODEL FOR ESTIMATION OF THERMODYNAMIC PARAMETERS OF REACTIONS AT HIGH-TEMPERATURES AND PRESSURES [J].
ANDERSON, GM ;
CASTET, S ;
SCHOTT, J ;
MESMER, RE .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1991, 55 (07) :1769-1779
[4]   RARE-GAS CONSTRAINTS ON HYDROCARBON ACCUMULATION, CRUSTAL DEGASSING AND GROUNDWATER-FLOW IN THE PANNONIAN BASIN [J].
BALLENTINE, CJ ;
ONIONS, RK ;
OXBURGH, ER ;
HORVATH, F ;
DEAK, J .
EARTH AND PLANETARY SCIENCE LETTERS, 1991, 105 (1-3) :229-246
[5]  
BECKER JA, 2005, THESIS U CAMBRIDGE C
[6]   THE CARBONATE-SILICATE GEOCHEMICAL CYCLE AND ITS EFFECT ON ATMOSPHERIC CARBON-DIOXIDE OVER THE PAST 100 MILLION YEARS [J].
BERNER, RA ;
LASAGA, AC ;
GARRELS, RM .
AMERICAN JOURNAL OF SCIENCE, 1983, 283 (07) :641-683
[7]   A MODEL FOR ATMOSPHERIC CO2 OVER PHANEROZOIC TIME [J].
BERNER, RA .
AMERICAN JOURNAL OF SCIENCE, 1991, 291 (04) :339-376
[8]  
Bethke C.M., 1996, Geochemical Reaction Modeling: Concepts and Applications
[9]   Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges [J].
Bickle, MJ ;
Chapman, HJ ;
Bunbury, J ;
Harris, NBW ;
Fairchild, IJ ;
Ahmad, T ;
Pomiès, C .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (09) :2221-2240
[10]   Metamorphic decarbonation, silicate weathering and the long-term carbon cycle [J].
Bickle, MJ .
TERRA NOVA, 1996, 8 (03) :270-276