Arcsine test for publication bias in meta-analyses with binary outcomes

被引:258
作者
Rucker, Gerta [1 ,2 ]
Schwarzer, Guido [1 ,2 ]
Carpenter, James [1 ,3 ,4 ]
机构
[1] Univ Freiburg, Inst Med Biometry & Med Informat, Univ Med Ctr, D-79104 Freiburg, Germany
[2] German Cochrane Ctr, Univ Med Ctr, Freiburg, Germany
[3] Univ Freiburg, Freiburg Ctr Data Anal & Modeling, Freiburg, Germany
[4] London Sch Hyg & Trop Med, Med Stat Unit, London WC1, England
关键词
meta-analysis; publication bias; small study effects; arcsine transformation; between-study heterogeneity; Copas model;
D O I
10.1002/sim.2971
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In meta-analyses, it sometimes happens that smaller trials show different, often larger, treatment effects. One possible reason for such 'small study effects' is publication bias. This is said to occur when the chance of a smaller study being published is increased if it shows a stronger effect. Assuming no other small study effects, under the null hypothesis of no publication bias, there should be no association between effect size and effect precision (e.g. inverse standard error) among the trials in a meta-analysis. A number of tests for small study effects/publication bias have been developed. These use either a non-parametric test or a regression test for association between effect size and precision. However, when the outcome is binary, the effect is summarized by the log-risk ratio or log-odds ratio (log OR). Unfortunately, these measures are not independent of their estimated standard error. Consequently, established tests reject the null hypothesis too frequently. We propose new tests based on the arcsine transformation, which stabilizes the variance of binomial random variables. We report results of a simulation study under the Copas model (on the log OR scale) for publication bias, which evaluates tests so far proposed in the literature. This shows that: (i) the size of one of the new tests is comparable to those of the best existing tests, including those recently published; and (ii) among such tests it has slightly greater power, especially when the effect size is small and heterogeneity is present. Arcsine tests have additional advantages that they can include trials with zero events in both arms and that they can be very easily performed using the existing software for regression tests. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:746 / 763
页数:18
相关论文
共 30 条
[1]   Widening eligibility to phase II trials: constant arcsine difference phase II trials [J].
A'Hern, RP .
CONTROLLED CLINICAL TRIALS, 2004, 25 (03) :251-264
[2]  
[Anonymous], SUMMING UP SCI REVIE
[3]  
Armitage P, 1987, Statistical methods in medical research, V2nd
[4]   OPERATING CHARACTERISTICS OF A BANK CORRELATION TEST FOR PUBLICATION BIAS [J].
BEGG, CB ;
MAZUMDAR, M .
BIOMETRICS, 1994, 50 (04) :1088-1101
[5]   RETRACTED: Drugs for preventing postoperative nausea and vomiting (Retracted Article) [J].
Carlisle, J. B. ;
Stevenson, C. A. .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2006, (03)
[6]   What works?: selectivity models and meta-analysis [J].
Copas, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1999, 162 :95-109
[7]  
Copas J, 2000, Biostatistics, V1, P247, DOI 10.1093/biostatistics/1.3.247
[8]   A sensitivity analysis for publication bias in systematic reviews [J].
Copas, JB ;
Shi, JQ .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2001, 10 (04) :251-265
[9]   Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes [J].
Deeks, JJ .
STATISTICS IN MEDICINE, 2002, 21 (11) :1575-1600
[10]   Bias of estimates of the number needed to treat [J].
Duncan, BW ;
Olkin, I .
STATISTICS IN MEDICINE, 2005, 24 (12) :1837-1848