On the classical statistical mechanics of non-Hamiltonian systems

被引:127
作者
Tuckerman, ME [1 ]
Mundy, CJ
Martyna, GJ
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[3] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[4] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
来源
EUROPHYSICS LETTERS | 1999年 / 45卷 / 02期
关键词
D O I
10.1209/epl/i1999-00139-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A consistent classical statistical mechanical theory of non-Hamiltonian dynamical systems is presented. It is shown that compressible phase space flows generate coordinate transformations with a nonunit Jacobian, leading to a metric on the phase space manifold which is nontrivial. Thus, the phase space of a non-Hamiltonian system should be regarded as a general curved Riemannian manifold. An invariant measure on the phase space manifold is then derived. It is further shown that a proper generalization of the Liouville equation must incorporate the metric determinant, and a geometric derivation of such a continuity equation is presented. The manifestations of the nontrivial nature of the phase space geometry on thermodynamic quantities is explored.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 15 条
[1]   THE RATE OF ENTROPY CHANGE IN NON-HAMILTONIAN SYSTEMS [J].
ANDREY, L .
PHYSICS LETTERS A, 1985, 111 (1-2) :45-46
[2]   NOTE CONCERNING THE PAPER THE RATE OF ENTROPY CHANGE IN NON-HAMILTONIAN SYSTEMS [J].
ANDREY, L .
PHYSICS LETTERS A, 1986, 114 (04) :183-184
[3]  
[Anonymous], 1985, THEORY THERMODYNAMIC
[4]  
Curtis W.D., 1985, Differential Manifolds and Theoretical Physics
[5]  
DUBROVIN BA, 1984, MODERN GEOMETRY ME 1
[6]  
Evans D.J., 1990, STAT MECH NONEQUILIB
[7]  
Gauss K. F., 1829, J REINE ANGEW MATH, V4, P232
[8]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[9]  
Liouville J., 1838, J. Math. Pures Appl., V3, P342
[10]   NOSE-HOOVER CHAINS - THE CANONICAL ENSEMBLE VIA CONTINUOUS DYNAMICS [J].
MARTYNA, GJ ;
KLEIN, ML ;
TUCKERMAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04) :2635-2643