Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins

被引:141
作者
Artsimovitch, I
Vassylyeva, MN
Svetlov, D
Svetlov, V
Perederina, A
Igarashi, N
Matsugaki, N
Wakatsuki, S
Tahirov, TH
Vassylyev, DG
机构
[1] RIKEN, Harima Inst, Struct & Mol Biol Lab, Sayo, Hyogo 6795148, Japan
[2] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[3] RIKEN, Harima Inst, High Throughput Factory, Sayo, Hyogo 6795148, Japan
[4] High Energy Accelerator Res Org, KEK, Inst Mat Struct Sci, Photon Factory,Struct Biol Res Ctr, Tsukuba, Ibaraki 3050801, Japan
[5] Univ Alabama, Sch Med, Dept Biochem & Mol Genet, Birmingham, AL 35294 USA
[6] Univ Alabama, Sch Dent, Dept Biochem & Mol Genet, Birmingham, AL 35294 USA
关键词
D O I
10.1016/j.cell.2005.07.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rifamycins, the clinically important antibiotics, target bacterial RNA polymerase (RNAP). A proposed mechanism in which rifamycins sterically block the extension of nascent RNA beyond three nucleotides does not alone explain why certain RNAP mutations confer resistance to some but not other rifamycins. Here we show that unlike rifampicin and rifapentin, and contradictory to the steric model, rifabutin inhibits formation of the first and second phosphodiester bonds. We report 2.5 angstrom resolution structures of rifabutin and rifapentin complexed with the Thermus thermophilus RNAP holoenzyme. The structures reveal functionally important distinct interactions of antibiotics with the initiation sigma factor. Strikingly, both complexes lack the catalytic Mg2+ ion observed in the apo-holoenzyme, whereas an increase in Mg2+ concentration confers resistance to rifamycins. We propose that a rifamycin-induced signal is transmitted over 19 angstrom to the RNAP active site to slow down catalysis. Based on structural predictions, we designed enzyme substitutions that apparently interrupt this allosteric signal.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 44 条
  • [1] RNA CLEAVAGE AND CHAIN ELONGATION BY ESCHERICHIA-COLI DNA-DEPENDENT RNA-POLYMERASE IN A BINARY ENZYME RNA COMPLEX
    ALTMANN, CR
    SOLOWCORDERO, DE
    CHAMBERLIN, MJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (09) : 3784 - 3788
  • [2] Structural basis for transcription regulation by alarmone ppGpp
    Artsimovitch, I
    Patlan, V
    Sekine, SI
    Vassylyeva, MN
    Hosaka, T
    Ochi, K
    Yokoyama, S
    Vassylyev, DG
    [J]. CELL, 2004, 117 (03) : 299 - 310
  • [3] Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions
    Artsimovitch, I
    Svetlov, V
    Murakami, KS
    Landick, R
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) : 12344 - 12355
  • [4] Comprehensive study on structure-activity relationships of rifamycins: Discussion of molecular and crystal structure and spectroscopic and thermochemical properties of rifamycin O
    Bacchi, A
    Pelizzi, G
    Nebuloni, M
    Ferrari, P
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 1998, 41 (13) : 2319 - 2332
  • [5] BARH W, 1976, RNA POLYMERASE, P369
  • [6] REFERENCE MUTATIONS FOR BETA-SUBUNIT OF RNA-POLYMERASE
    BOYD, DH
    ZILLIG, W
    SCAIFE, FJG
    [J]. MOLECULAR AND GENERAL GENETICS, 1974, 130 (04): : 315 - 320
  • [7] BRUFANI M, 1982, MOL PHARMACOL, V21, P394
  • [8] Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
  • [9] Structural mechanism for rifampicin inhibition of bacterial RNA polymerase
    Campbell, EA
    Korzheva, N
    Mustaev, A
    Murakami, K
    Nair, S
    Goldfarb, A
    Darst, SA
    [J]. CELL, 2001, 104 (06) : 901 - 912
  • [10] Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase
    Campbell, EA
    Pavlova, O
    Zenkin, N
    Leon, F
    Irschik, H
    Jansen, R
    Severinov, K
    Darst, SA
    [J]. EMBO JOURNAL, 2005, 24 (04) : 674 - 682