Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase

被引:70
作者
Dai, Lijun [1 ]
Douglas, Elliot P. [1 ]
Gower, Laurie B. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
biomaterials; biopolymers; crystal growth; colloids; nano-clusters; phases and equilibria; hydration;
D O I
10.1016/j.jnoncrysol.2007.10.022
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Amorphous calcium carbonate (ACC) has been of keen interest in the biomimetics field because of recent evidence which suggests it plays an important role in biomineralization. fit this report, an in vitro model system is used to examine the composition of an amorphous phase generated by polyanionic process-directing agents, such as the sodium salt of polyaspartic acid (Pasp), which is considered a simple mimic to the proteins associated with calcific biominerals. This additive leads to the formation of a highly hydrated, amorphous mineral precursor to calcium carbonate (CaCO3), referred to as a polymer-induced liquid-precursor (PILP) phase. The precursor phase was collected by centrifugation, and the quantity of precursor phase and the water content were determined. It was found that Pasp promotes and stabilizes the amorphous precursor, which has a composition that steadily changes with time as the polymer and water are excluded. Elemental analysis was used to investigate the role of the polymer in influencing the calcium/carbonate ratio, the water content, and the amount of precursor phase. Raman and ATR-FTIR spectroscopy were used to compare the compositions of the precursor phases generated with different polymeric concentrations. The role of Pasp in generating and stabilizing the ACC precursor phase is discussed. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1845 / 1854
页数:10
相关论文
共 49 条
[1]   Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization [J].
Addadi, L ;
Raz, S ;
Weiner, S .
ADVANCED MATERIALS, 2003, 15 (12) :959-970
[2]   A CHEMICAL-MODEL FOR THE COOPERATION OF SULFATES AND CARBOXYLATES IN CALCITE CRYSTAL NUCLEATION - RELEVANCE TO BIOMINERALIZATION [J].
ADDADI, L ;
MORADIAN, J ;
SHAY, E ;
MAROUDAS, NG ;
WEINER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (09) :2732-2736
[3]   Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates [J].
Aizenberg, J ;
Lambert, G ;
Addadi, L ;
Weiner, S .
ADVANCED MATERIALS, 1996, 8 (03) :222-&
[4]   Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues [J].
Aizenberg, J ;
Weiner, S ;
Addadi, L .
CONNECTIVE TISSUE RESEARCH, 2003, 44 :20-25
[5]   Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton [J].
Aizenberg, J ;
Lambert, G ;
Weiner, S ;
Addadi, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (01) :32-39
[6]   Formation of single-crystalline aragonite tablets/films via an amorphous precursor [J].
Amos, Fairland F. ;
Sharbaugh, Denise M. ;
Talham, Daniel R. ;
Gower, Laurie B. ;
Fricke, Marc ;
Volkmer, Dirk .
LANGMUIR, 2007, 23 (04) :1988-1994
[7]   Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth [J].
Beniash, E ;
Aizenberg, J ;
Addadi, L ;
Weiner, S .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1380) :461-465
[8]  
Chen KC, 2005, RES FINANCE, V22, P141
[9]   Precipitation of carbonates:: recent progress in controlled production of complex shapes [J].
Cölfen, H .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2003, 8 (01) :23-31
[10]  
DAI L, CRYST GROWTH D UNPUB