Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse

被引:103
作者
Hu, Q [1 ]
Joshi, RP [1 ]
Schoenbach, KH [1 ]
机构
[1] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 03期
关键词
D O I
10.1103/PhysRevE.72.031902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100 kV/cm), ultrashort (10 ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5 ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the result of molecular translocation across the trans-membrane energy barrier.
引用
收藏
页数:10
相关论文
共 78 条
[1]  
Allen M. P., 1987, J COMPUTER SIMULATIO, DOI DOI 10.2307/2938686
[2]   COMPUTER-SIMULATION OF A PHOSPHOLIPID MONOLAYER-WATER SYSTEM - THE INFLUENCE OF LONG-RANGE FORCES ON WATER-STRUCTURE AND DYNAMICS [J].
ALPER, HE ;
BASSOLINO, D ;
STOUCH, TR .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :9798-9807
[3]   Aminophospholipid asymmetry: A matter of life and death [J].
Balasubramanian, K ;
Schroit, AJ .
ANNUAL REVIEW OF PHYSIOLOGY, 2003, 65 :701-734
[4]   Assessing the potential of skin electroporation for the delivery of protein- and gene-based drugs [J].
Banga, AK ;
Prausnitz, MR .
TRENDS IN BIOTECHNOLOGY, 1998, 16 (10) :408-412
[5]   ELECTROPORATION - A UNIFIED, QUANTITATIVE THEORY OF REVERSIBLE ELECTRICAL BREAKDOWN AND MECHANICAL RUPTURE IN ARTIFICIAL PLANAR BILAYER-MEMBRANES [J].
BARNETT, A ;
WEAVER, JC .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1991, 25 (02) :163-182
[6]   Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid [J].
Basse, F ;
Stout, JG ;
Sims, PJ ;
Wiedmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (29) :17205-17210
[7]   Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms [J].
Beebe, SJ ;
Blackmore, PF ;
White, J ;
Joshi, RP ;
Schoenbach, KH .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (04) :1077-1093
[8]   Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells [J].
Beebe, SJ ;
Fox, PM ;
Rec, LJ ;
Willis, LK ;
Schoenbach, KH .
FASEB JOURNAL, 2003, 17 (09) :1493-+
[9]   Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: Apoptosis induction and tumor growth inhibition [J].
Beebe, SJ ;
Fox, PM ;
Rec, LJ ;
Somers, K ;
Stark, RH ;
Schoenbach, KH .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (01) :286-292
[10]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE