Oxide and carbide formation at titanium/organic monolayer interfaces

被引:27
作者
Blackstock, Jason J. [1 ]
Donley, Carrie L. [1 ]
Stickle, William F. [2 ]
Ohlberg, Douglas A. A. [1 ]
Yang, J. Joshua [1 ]
Stewart, Duncan R. [1 ]
Williams, R. Stanley [1 ]
机构
[1] Hewlett Packard Labs, Informat & Quantum Syst Lab, Palo Alto, CA 94304 USA
[2] Hewlett Packard Corp, Analyt & Dev Labs, Corvallis, OR 97330 USA
关键词
D O I
10.1021/ja710448e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
X-ray photoelectron spectra (XPS) are reported from a series of buried titanium/organic monolayer interfaces accessed through sample delamination in ultrahigh vacuum (UHV). Conventional characterization of such buried interfaces requires ion-mill depth profiling, an energetic process that frequently destroys bonding information by chemically reducing the milled material. In contrast, we show that delaminating the samples at the metal/organic interface in vacuum yields sharp, nonreduced spectra that allow quantitative analysis of the buried interface chemistry. Using this UHV delamination XPS, we examine titanium vapor deposited onto a C-18 cadmium stearate Langmuir-Blodgett monolayer supported on Au, SiO2, or PtO2 substrates. Titanium is widely used as an adhesion layer in organic thick film metallization as well as a top metal contact for molecular monolayer junctions, where it has been assumed to form a few-atoms-thick Ti carbide overlayer. We establish here that under many conditions the titanium instead forms a few-nanometers-thick Ti oxide overlayer. Both TiO2 and reduced TiOx species exist, with the relative proportion depending on oxygen availability. Oxygen is gettered during deposition from the ambient, from the organic film, and remarkably, from the substrate itself, producing substrate-dependent amounts of Ti oxide and Ti carbide "damage". On Au substrates, up to 20% of the molecular-monolayer carbon formed titanium carbide, SiO2 substrates similar to 15%, and PtO2 substrates <5%. Titanium oxide formation is also strongly dependent on the deposition rate and chamber pressure.
引用
收藏
页码:4041 / 4047
页数:7
相关论文
共 43 条
  • [1] [Anonymous], MOL ELECT CHEM 21 CE
  • [2] Internal structure of a molecular junction device:: Chemical reduction of PtO2 by Ti evaporation onto an interceding organic monolayer
    Blackstock, Jason J.
    Stickle, William F.
    Donley, Carrie L.
    Stewart, Duncan R.
    Williams, R. Stanley
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (01) : 16 - 20
  • [3] Plasma-produced ultra-thin platinum-oxide films for nanoelectronics: physical characterization
    Blackstock, JJ
    Stewart, DR
    Li, Z
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06): : 1343 - 1353
  • [4] Investigation of a model molecular-electronic rectifier with an evaporated Ti-metal top contact
    Chang, SC
    Li, ZY
    Lau, CN
    Larade, B
    Williams, RS
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (15) : 3198 - 3200
  • [5] Nanoscale molecular-switch crossbar circuits
    Chen, Y
    Jung, GY
    Ohlberg, DAA
    Li, XM
    Stewart, DR
    Jeppesen, JO
    Nielsen, KA
    Stoddart, JF
    Williams, RS
    [J]. NANOTECHNOLOGY, 2003, 14 (04) : 462 - 468
  • [6] Nanoscale molecular-switch devices fabricated by imprint lithography
    Chen, Y
    Ohlberg, DAA
    Li, XM
    Stewart, DR
    Williams, RS
    Jeppesen, JO
    Nielsen, KA
    Stoddart, JF
    Olynick, DL
    Anderson, E
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (10) : 1610 - 1612
  • [7] A [2]catenane-based solid state electronically reconfigurable switch
    Collier, CP
    Mattersteig, G
    Wong, EW
    Luo, Y
    Beverly, K
    Sampaio, J
    Raymo, FM
    Stoddart, JF
    Heath, JR
    [J]. SCIENCE, 2000, 289 (5482) : 1172 - 1175
  • [8] Electronically configurable molecular-based logic gates
    Collier, CP
    Wong, EW
    Belohradsky, M
    Raymo, FM
    Stoddart, JF
    Kuekes, PJ
    Williams, RS
    Heath, JR
    [J]. SCIENCE, 1999, 285 (5426) : 391 - 394
  • [9] Cumpson PJ, 1997, SURF INTERFACE ANAL, V25, P430, DOI 10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO
  • [10] 2-7