Mixtures of bosonic and fermionic atoms in optical lattices

被引:165
作者
Albus, A
Illuminati, F
Eisert, J
机构
[1] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[2] Univ Salerno, Dipartimento Fis, I-84081 Baronissi, SA, Italy
[3] Ist Nazl Fis Mat, I-84081 Baronissi, SA, Italy
[4] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 02期
关键词
D O I
10.1103/PhysRevA.68.023606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.
引用
收藏
页数:11
相关论文
共 48 条
[1]  
ALBUS A, UNPUB
[2]   Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation [J].
Albus, AP ;
Illuminati, F ;
Wilkens, M .
PHYSICAL REVIEW A, 2003, 67 (06) :6
[3]   Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field corrections [J].
Albus, AP ;
Gardiner, SA ;
Illuminati, F ;
Wilkens, M .
PHYSICAL REVIEW A, 2002, 65 (05) :15
[4]   Bose-Einstein condensation of atomic gases [J].
Anglin, JR ;
Ketterle, W .
NATURE, 2002, 416 (6877) :211-218
[5]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[6]   Mott domains of bosons confined on optical lattices [J].
Batrouni, GG ;
Rousseau, V ;
Scalettar, RT ;
Rigol, M ;
Muramatsu, A ;
Denteneer, PJH ;
Troyer, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (11)
[7]   Commensurate-incommensurate transition of cold atoms in an optical lattice -: art. no. 130401 [J].
Büchler, HP ;
Blatter, G ;
Zwerger, W .
PHYSICAL REVIEW LETTERS, 2003, 90 (13) :4
[8]  
BUCHLER HP, CONDMAT0304534
[9]  
CAZALILLA MA, CONDMAT0303550
[10]   Quantum phase transition in a multicomponent Bose-Einstein condensate in optical lattices [J].
Chen, GH ;
Wu, YS .
PHYSICAL REVIEW A, 2003, 67 (01) :8