Covariance matrix estimation and classification with limited training data

被引:188
作者
Hoffbeck, JP [1 ]
Landgrebe, DA [1 ]
机构
[1] PURDUE UNIV,SCH ELECT ENGN,W LAFAYETTE,IN 47907
基金
美国国家航空航天局;
关键词
covariance matrix; estimation; leave-one-out method; cross validation; classification; high dimensional data;
D O I
10.1109/34.506799
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new covariance matrix estimator useful for designing classifiers with limited training data is developed. In experiments, this estimator achieved higher classification accuracy than the sample covariance matrix and common covariance matrix estimates. In about half of the experiments, it achieved higher accuracy than regularized discriminant analysis, but required much less computation.
引用
收藏
页码:763 / 767
页数:5
相关论文
共 6 条