INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVEN-WAVE TURBULENCE

被引:188
作者
Chandran, Benjamin D. G. [1 ,2 ]
Dennis, Timothy J. [1 ,2 ]
Quataert, Eliot [3 ,4 ]
Bale, Stuart D. [5 ,6 ]
机构
[1] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[2] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[3] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
solar wind; Sun: corona; turbulence; waves; ELECTRON HEAT-CONDUCTION; POLAR CORONAL HOLE; MAGNETOHYDRODYNAMIC TURBULENCE; TRANSPORT-EQUATIONS; VELOCITY DISTRIBUTIONS; MHD TURBULENCE; DRIVEN MODEL; AU; PROTON; FLUCTUATIONS;
D O I
10.1088/0004-637X/743/2/197
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a one-dimensional solar-wind model that includes separate energy equations for the electrons and protons, proton temperature anisotropy, collisional and collisionless heat flux, and an analytical treatment of low-frequency, reflection-driven, Alfven-wave (AW) turbulence. To partition the turbulent heating between electron heating, parallel proton heating, and perpendicular proton heating, we employ results from the theories of linear wave damping and nonlinear stochastic heating. We account for mirror and oblique firehose instabilities by increasing the proton pitch-angle scattering rate when the proton temperature anisotropy exceeds the threshold for either instability. We numerically integrate the equations of the model forward in time until a steady state is reached, focusing on two fast-solar-wind-like solutions. These solutions are consistent with a number of observations, supporting the idea that AW turbulence plays an important role in the origin of the solar wind.
引用
收藏
页数:16
相关论文
共 149 条
[1]  
Allen C. W., 1973, ASTROPHYSICAL QUANTI
[2]   Fast solar wind velocity in a polar coronal hole during solar minimum [J].
Antonucci, E ;
Dodero, MA ;
Giordano, S .
SOLAR PHYSICS, 2000, 197 (01) :115-134
[3]   Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind [J].
Bale, S. D. ;
Kasper, J. C. ;
Howes, G. G. ;
Quataert, E. ;
Salem, C. ;
Sundkvist, D. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[4]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[5]   COLLISIONLESS DAMPING OF HYDROMAGNETIC WAVES [J].
BARNES, A .
PHYSICS OF FLUIDS, 1966, 9 (08) :1483-&
[6]   On the evolution of outward and inward Alfvenic fluctuations in the polar wind [J].
Bavassano, B ;
Pietropalo, E ;
Bruno, R .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A7) :15959-15964
[7]   LARGE-AMPLITUDE ALFVEN WAVES IN INTERPLANETARY MEDIUM .2. [J].
BELCHER, JW ;
DAVIS, L .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (16) :3534-+
[8]   Spectrum of magnetohydrodynamic turbulence [J].
Boldyrev, S .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[9]   SPECTRAL SCALING LAWS IN MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS AND IN THE SOLAR WIND [J].
Boldyrev, Stanislav ;
Perez, Jean Carlos ;
Borovsky, Joseph E. ;
Podesta, John J. .
ASTROPHYSICAL JOURNAL LETTERS, 2011, 741 (01)
[10]  
Book D.L., 1983, NRL (Naval Research Laboratory) plasma formulary