Inferring (biological) signal transduction networks via transitive reductions of directed graphs

被引:9
作者
Albert, Reka [2 ]
DasGupta, Bhaskar [1 ]
Dondi, Riccardo [3 ]
Sontag, Eduardo [4 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Univ Studi Bergamo, Dipartimento Sci Linguaggi Comun Studi Culturali, I-24129 Bergamo, Italy
[4] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
transitive reduction of directed graphs; minimum equivalent digraph; (biological) signal transduction networks; approximation algorithms;
D O I
10.1007/s00453-007-9055-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we consider the p-ary transitive reduction (TR (p) ) problem where p > 0 is an integer; for p=2 this problem arises in inferring a sparsest possible (biological) signal transduction network consistent with a set of experimental observations with a goal to minimize false positive inferences even if risking false negatives. Special cases of TR (p) have been investigated before in different contexts; the best previous results are as follows: (1) The minimum equivalent digraph problem, that correspond to a special case of TR1 with no critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation ratio of 1.617+epsilon for any constant epsilon > 0 (Chiu and Liu in Sci. Sin. 4:1396-1400, 1965) and can be solved in linear time for directed acyclic graphs (Aho et al. in SIAM J. Comput. 1(2):131-137, 1972). (2) A 2-approximation algorithm exists for TR1 (Frederickson and JaJa in SIAM J. Comput. 10(2):270-283, 1981; Khuller et al. in 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937-938, 1999). In this paper, our contributions are as follows: We observe that TRp , for any integer p > 0, can be solved in linear time for directed acyclic graphs using the ideas in Aho et al. (SIAM J. Comput. 1(2):131-137, 1972). We provide a 1.78-approximation for TR1 that improves the 2-approximation mentioned in (2) above. We provide a 2+o(1)-approximation for TR (p) on general graphs for any fixed prime p > 1.
引用
收藏
页码:129 / 159
页数:31
相关论文
共 23 条
[1]  
Aho A. V., 1972, SIAM Journal on Computing, V1, P131, DOI 10.1137/0201008
[2]  
Alberts B., 1994, Molecular biology of the cell
[3]  
CHU YJ, 1965, SCI SINICA, V14, P1396
[4]  
Cormen T. H., 2001, Introduction to Algorithms, V2nd
[5]  
DasGupta B, 2006, LECT NOTES COMPUT SC, V4007, P253
[6]   A new role for an old enzyme:: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana [J].
Desikan, R ;
Griffiths, R ;
Hancock, J ;
Neill, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16314-16318
[7]  
EDMONDS J, 1968, AM MATH SOC LECT APP, V11, P335
[8]  
Fall C. P., 2002, Computational cell biology
[9]   APPROXIMATION ALGORITHMS FOR SEVERAL GRAPH AUGMENTATION PROBLEMS [J].
FREDERICKSON, GN ;
JAJA, J .
SIAM JOURNAL ON COMPUTING, 1981, 10 (02) :270-283
[10]   A protein interaction map of Drosophila melanogaster [J].
Giot, L ;
Bader, JS ;
Brouwer, C ;
Chaudhuri, A ;
Kuang, B ;
Li, Y ;
Hao, YL ;
Ooi, CE ;
Godwin, B ;
Vitols, E ;
Vijayadamodar, G ;
Pochart, P ;
Machineni, H ;
Welsh, M ;
Kong, Y ;
Zerhusen, B ;
Malcolm, R ;
Varrone, Z ;
Collis, A ;
Minto, M ;
Burgess, S ;
McDaniel, L ;
Stimpson, E ;
Spriggs, F ;
Williams, J ;
Neurath, K ;
Ioime, N ;
Agee, M ;
Voss, E ;
Furtak, K ;
Renzulli, R ;
Aanensen, N ;
Carrolla, S ;
Bickelhaupt, E ;
Lazovatsky, Y ;
DaSilva, A ;
Zhong, J ;
Stanyon, CA ;
Finley, RL ;
White, KP ;
Braverman, M ;
Jarvie, T ;
Gold, S ;
Leach, M ;
Knight, J ;
Shimkets, RA ;
McKenna, MP ;
Chant, J ;
Rothberg, JM .
SCIENCE, 2003, 302 (5651) :1727-1736