Warm cascades and anomalous scaling in a diffusion model of turbulence

被引:78
作者
Connaughton, C
Nazarenko, S
机构
[1] Ecole Normale Super, Phys Stat Lab, CNRS, F-75231 Paris 05, France
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1103/PhysRevLett.92.044501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A phenomenological turbulence model in which the energy spectrum obeys a nonlinear diffusion equation is analyzed. The general steady state contains a nonlinear mixture of the constant-flux Kolmogorov and fluxless thermodynamic components. Such "warm cascade" solutions describe a bottleneck phenomenon of spectrum stagnation near the dissipative scale. Transient self-similar solutions describing a finite-time formation of steady cascades are analyzed and found to exhibit nontrivial scaling behavior.
引用
收藏
页码:4 / 445014
页数:4
相关论文
共 9 条
[1]   Spectral transport model for turbulence [J].
Besnard, DC ;
Harlow, FH ;
Rauenzahn, RM ;
Zemach, C .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1996, 8 (01) :1-35
[2]   Non-stationary spectra of local wave turbulence [J].
Connaughton, C ;
Newell, AC ;
Pomeau, Y .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) :64-85
[3]  
CONNAUGHTON C, PHYSICS0304044
[4]   BOTTLENECK PHENOMENON IN DEVELOPED TURBULENCE [J].
FALKOVICH, G .
PHYSICS OF FLUIDS, 1994, 6 (04) :1411-1414
[5]   A weak turbulence theory for incompressible magnetohydrodynamics [J].
Galtier, S ;
Nazarenko, SV ;
Newell, AC ;
Pouquet, A .
JOURNAL OF PLASMA PHYSICS, 2000, 63 :447-488
[6]  
KOVASZNAY L, 1947, J AERONAUT SCI, V15, P745
[7]   WAITING-TIME SOLUTIONS OF A NON-LINEAR DIFFUSION EQUATION [J].
LACEY, AA ;
OCKENDON, JR ;
TAYLER, AB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (06) :1252-1264
[8]   DIFFUSION APPROXIMATION FOR TURBULENT SCALAR FIELDS [J].
LEITH, CE .
PHYSICS OF FLUIDS, 1968, 11 (08) :1612-&
[9]   DIFFUSION APPROXIMATION TO INTERTIAL ENERGY TRANSFER IN ISOTROPIC TURBULENCE [J].
LEITH, CE .
PHYSICS OF FLUIDS, 1967, 10 (07) :1409-+